BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Otis JM, Zhu M, Namboodiri VMK, Cook CA, Kosyk O, Matan AM, Ying R, Hashikawa Y, Hashikawa K, Trujillo-Pisanty I, Guo J, Ung RL, Rodriguez-Romaguera J, Anton ES, Stuber GD. Paraventricular Thalamus Projection Neurons Integrate Cortical and Hypothalamic Signals for Cue-Reward Processing. Neuron 2019;103:423-431.e4. [PMID: 31196673 DOI: 10.1016/j.neuron.2019.05.018] [Cited by in Crossref: 47] [Cited by in F6Publishing: 71] [Article Influence: 15.7] [Reference Citation Analysis]
Number Citing Articles
1 Tian J, Ren M, Zhao P, Luo S, Chen Y, Xu X, Jiang T, Sun Q, Li A, Gong H, Li X, Luo Q. Dissection of the long-range projections of specific neurons at the synaptic level in the whole mouse brain. Proc Natl Acad Sci U S A 2022;119:e2202536119. [PMID: 36161898 DOI: 10.1073/pnas.2202536119] [Reference Citation Analysis]
2 Yang X, Su Y, Yang F, Song Y, Yan J, Luo Y, Zeng J. Neurofunctional mapping of reward anticipation and outcome for major depressive disorder: a voxel-based meta-analysis. Psychol Med 2022;:1-14. [PMID: 36047042 DOI: 10.1017/S0033291722002707] [Reference Citation Analysis]
3 Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022;16:964644. [DOI: 10.3389/fnbeh.2022.964644] [Reference Citation Analysis]
4 Paniccia JE, Otis JM, Scofield MD. Looking to the Stars for Answers: Strategies for Determining How Astrocytes Influence Neuronal Activity. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.07.052] [Reference Citation Analysis]
5 Li H, Namburi P, Olson JM, Borio M, Lemieux ME, Beyeler A, Calhoon GG, Hitora-Imamura N, Coley AA, Libster A, Bal A, Jin X, Wang H, Jia C, Choudhury SR, Shi X, Felix-Ortiz AC, de la Fuente V, Barth VP, King HO, Izadmehr EM, Revanna JS, Batra K, Fischer KB, Keyes LR, Padilla-Coreano N, Siciliano CA, McCullough KM, Wichmann R, Ressler KJ, Fiete IR, Zhang F, Li Y, Tye KM. Neurotensin orchestrates valence assignment in the amygdala. Nature 2022. [PMID: 35859170 DOI: 10.1038/s41586-022-04964-y] [Reference Citation Analysis]
6 Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022. [PMID: 35838792 DOI: 10.1007/s00429-022-02534-6] [Reference Citation Analysis]
7 Baimel C, Jang E, Scudder SL, Manoocheri K, Carter AG. Hippocampal-evoked inhibition of cholinergic interneurons in the nucleus accumbens. Cell Rep 2022;40:111042. [PMID: 35793623 DOI: 10.1016/j.celrep.2022.111042] [Reference Citation Analysis]
8 Cruz KG, Leow YN, Le NM, Adam E, Huda R, Sur M. Cortical-Subcortical Interactions in Goal-directed Behavior. Physiol Rev 2022. [PMID: 35771984 DOI: 10.1152/physrev.00048.2021] [Reference Citation Analysis]
9 Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts. J Physiol 2022. [PMID: 35648134 DOI: 10.1113/JP282996] [Reference Citation Analysis]
10 Bu X, Liu C, Fu B. Research progress of the paraventricular thalamus in the regulation of sleep–wake and emotional behaviors. Ibrain 2022;8:219-26. [DOI: 10.1002/ibra.12034] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Wang J, Shan W, Chen X, Zuo Z. Whisker trimming induces anti-anxiety like status via activation of dorsomedial hypothalamus nucleus in mice. Brain Res 2022;:147946. [PMID: 35597326 DOI: 10.1016/j.brainres.2022.147946] [Reference Citation Analysis]
12 Guillory AM, Herrera SH, Baker LK, Bubula N, Forneris J, You ZB, Vezina P, Singer BF. Conditioned Inhibition of Amphetamine Sensitization. Neurobiol Learn Mem 2022;:107636. [PMID: 35597434 DOI: 10.1016/j.nlm.2022.107636] [Reference Citation Analysis]
13 Parker NF, Baidya A, Cox J, Haetzel LM, Zhukovskaya A, Murugan M, Engelhard B, Goldman MS, Witten IB. Choice-selective sequences dominate in cortical relative to thalamic inputs to NAc to support reinforcement learning. Cell Rep 2022;39:110756. [PMID: 35584665 DOI: 10.1016/j.celrep.2022.110756] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Młynarska E, Gadzinowska J, Tokarek J, Forycka J, Szuman A, Franczyk B, Rysz J. The Role of the Microbiome-Brain-Gut Axis in the Pathogenesis of Depressive Disorder. Nutrients 2022;14:1921. [DOI: 10.3390/nu14091921] [Reference Citation Analysis]
15 Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord 2022. [PMID: 35380355 DOI: 10.1007/s11154-022-09720-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gaspari S, Quenneville S, Rodriguez Sanchez-Archidona A, Thorens B, Croizier S. Structural and molecular characterization of paraventricular thalamic glucokinase-expressing neuronal circuits in the mouse. J Comp Neurol 2022. [PMID: 35303367 DOI: 10.1002/cne.25312] [Reference Citation Analysis]
17 Lalive AL, Congiu M, Lewis C, Groos D, Clerke JA, Tchenio A, Ge Y, Helmchen F, Mameli M. Synaptic inhibition in the lateral habenula shapes reward anticipation. Current Biology 2022. [DOI: 10.1016/j.cub.2022.02.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Siemsen BM, Barry SM, Vollmer KM, Green LM, Brock AG, Westphal AM, King RA, Devries DM, Otis JM, Cowan CW, Scofield MD. A Subset of Nucleus Accumbens Neurons Receiving Dense and Functional Prelimbic Cortical Input Are Required for Cocaine Seeking. Front Cell Neurosci 2022;16:844243. [DOI: 10.3389/fncel.2022.844243] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
19 Desrochers SS, Spring MG, Nautiyal KM. A Role for Serotonin in Modulating Opposing Drive and Brake Circuits of Impulsivity. Front Behav Neurosci 2022;16:791749. [DOI: 10.3389/fnbeh.2022.791749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jessen K, Slaker Bennett ML, Liu S, Olsen CM. Comparison of prefrontal cortex sucrose seeking ensembles engaged in multiple seeking sessions: Context is key. J Neurosci Res 2022. [PMID: 35137974 DOI: 10.1002/jnr.25025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Kim TH, Schnitzer MJ. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 2022;185:9-41. [PMID: 34995519 DOI: 10.1016/j.cell.2021.12.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 K Namboodiri VM, Hobbs T, Trujillo-Pisanty I, Simon RC, Gray MM, Stuber GD. Relative salience signaling within a thalamo-orbitofrontal circuit governs learning rate. Curr Biol 2021;31:5176-5191.e5. [PMID: 34637750 DOI: 10.1016/j.cub.2021.09.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Vollmer KM, Doncheck EM, Grant RI, Winston KT, Romanova EV, Bowen CW, Siegler PN, Green LM, Bobadilla AC, Trujillo-Pisanty I, Kalivas PW, Otis JM. A Novel Assay Allowing Drug Self-Administration, Extinction, and Reinstatement Testing in Head-Restrained Mice. Front Behav Neurosci 2021;15:744715. [PMID: 34776891 DOI: 10.3389/fnbeh.2021.744715] [Reference Citation Analysis]
24 Lucantonio F, Kim E, Su Z, Chang AJ, Bari BA, Cohen JY. Aversive stimuli bias corticothalamic responses to motivationally significant cues. Elife 2021;10:e57634. [PMID: 34738905 DOI: 10.7554/eLife.57634] [Reference Citation Analysis]
25 Jung S, Lee M, Kim DY, Son C, Ahn BH, Heo G, Park J, Kim M, Park HE, Koo DJ, Park JH, Lee JW, Choe HK, Kim SY. A forebrain neural substrate for behavioral thermoregulation. Neuron 2021:S0896-6273(21)00712-1. [PMID: 34687664 DOI: 10.1016/j.neuron.2021.09.039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021;44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Reference Citation Analysis]
27 Hoang IB, Sharpe MJ. The basolateral amygdala and lateral hypothalamus bias learning towards motivationally significant events. Current Opinion in Behavioral Sciences 2021;41:92-7. [DOI: 10.1016/j.cobeha.2021.04.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Ye Q, Zhang X. Serotonin activates paraventricular thalamic neurons through direct depolarization and indirect disinhibition from zona incerta. J Physiol 2021;599:4883-900. [PMID: 34510418 DOI: 10.1113/JP282088] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 18.0] [Reference Citation Analysis]
30 Levine OB, Skelly MJ, Miller JD, Rivera-Irizarry JK, Rowson SA, DiBerto JF, Rinker JA, Thiele TE, Kash TL, Pleil KE. The paraventricular thalamus provides a polysynaptic brake on limbic CRF neurons to sex-dependently blunt binge alcohol drinking and avoidance behavior in mice. Nat Commun 2021;12:5080. [PMID: 34426574 DOI: 10.1038/s41467-021-25368-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Cheron J, Kerchove d'Exaerde A. Drug addiction: from bench to bedside. Transl Psychiatry 2021;11:424. [PMID: 34385417 DOI: 10.1038/s41398-021-01542-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 De Groote A, de Kerchove d'Exaerde A. Thalamo-Nucleus Accumbens Projections in Motivated Behaviors and Addiction. Front Syst Neurosci 2021;15:711350. [PMID: 34335197 DOI: 10.3389/fnsys.2021.711350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 James MH, McNally GP, Li X. Editorial: Role of the Thalamus in Motivated Behavior. Front Behav Neurosci 2021;15:720592. [PMID: 34276320 DOI: 10.3389/fnbeh.2021.720592] [Reference Citation Analysis]
34 Grant RI, Doncheck EM, Vollmer KM, Winston KT, Romanova EV, Siegler PN, Holman H, Bowen CW, Otis JM. Specialized coding patterns among dorsomedial prefrontal neuronal ensembles predict conditioned reward seeking. Elife 2021;10:e65764. [PMID: 34184635 DOI: 10.7554/eLife.65764] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
35 Iglesias AG, Flagel SB. The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Front Integr Neurosci 2021;15:706713. [PMID: 34220458 DOI: 10.3389/fnint.2021.706713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
36 Li S, Dong X, Kirouac GJ. Extensive divergence of projections to the forebrain from neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct 2021;226:1779-802. [PMID: 34032911 DOI: 10.1007/s00429-021-02289-6] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
37 Kooiker CL, Birnie MT, Baram TZ. The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Front Behav Neurosci 2021;15:673162. [PMID: 34079442 DOI: 10.3389/fnbeh.2021.673162] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
38 Kong MS, Zweifel LS. Central amygdala circuits in valence and salience processing. Behav Brain Res 2021;410:113355. [PMID: 33989728 DOI: 10.1016/j.bbr.2021.113355] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
39 Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2021. [PMID: 33963288 DOI: 10.1038/s41380-021-01112-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
40 Engelke DS, Zhang XO, O'Malley JJ, Fernandez-Leon JA, Li S, Kirouac GJ, Beierlein M, Do-Monte FH. A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats. Nat Commun 2021;12:2517. [PMID: 33947849 DOI: 10.1038/s41467-021-22730-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
41 Petrovich GD. The Function of Paraventricular Thalamic Circuitry in Adaptive Control of Feeding Behavior. Front Behav Neurosci 2021;15:671096. [PMID: 33986649 DOI: 10.3389/fnbeh.2021.671096] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
42 Yu L, Chu C, Yuan Y, Guo X, Lei C, Sheng H, Yang L, Cui D, Lai B, Zheng P. Activity in projection neurons from prelimbic cortex to the PVT is necessary for retrieval of morphine withdrawal memory. Cell Rep 2021;35:108958. [PMID: 33826893 DOI: 10.1016/j.celrep.2021.108958] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Penzo MA, Gao C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021;44:538-49. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
44 Pastor V, Medina JH. Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation. Eur J Neurosci 2021;53:3039-62. [PMID: 33660363 DOI: 10.1111/ejn.15168] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
45 Horio N, Liberles SD. Hunger enhances food-odour attraction through a neuropeptide Y spotlight. Nature 2021;592:262-6. [PMID: 33658716 DOI: 10.1038/s41586-021-03299-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
46 Pastor V, Castillo Díaz F, Sanabria VC, Dalto JF, Antonelli MC, Medina JH. Prefrontal cortex nicotinic receptor inhibition by methyllycaconitine impaired cocaine-associated memory acquisition and retrieval. Behav Brain Res 2021;406:113212. [PMID: 33657437 DOI: 10.1016/j.bbr.2021.113212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021;15:627633. [PMID: 33732118 DOI: 10.3389/fnbeh.2021.627633] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
48 McNally GP. Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021;125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
49 Zeng Q, Shan W, Zhang H, Yang J, Zuo Z. Paraventricular thalamic nucleus plays a critical role in consolation and anxious behaviors of familiar observers exposed to surgery mice. Theranostics 2021;11:3813-29. [PMID: 33664863 DOI: 10.7150/thno.45690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
50 Barrett LR, Nunez J, Zhang X. Oxytocin activation of paraventricular thalamic neurons promotes feeding motivation to attenuate stress-induced hypophagia. Neuropsychopharmacology 2021;46:1045-56. [PMID: 33495546 DOI: 10.1038/s41386-021-00961-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
51 Alonso-Caraballo Y, Guha SK, Chartoff EH. The neurobiology of abstinence-induced reward-seeking in males and females. Pharmacol Biochem Behav 2021;200:173088. [PMID: 33333134 DOI: 10.1016/j.pbb.2020.173088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
52 Robinson SL, Dornellas APS, Burnham NW, Houck CA, Luhn KL, Bendrath SC, Companion MA, Brewton HW, Thomas RD, Navarro M, Thiele TE. Distinct and Overlapping Patterns of Acute Ethanol-Induced C-Fos Activation in Two Inbred Replicate Lines of Mice Selected for Drinking to High Blood Ethanol Concentrations. Brain Sci 2020;10:E988. [PMID: 33333877 DOI: 10.3390/brainsci10120988] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
53 Sofia Beas B, Gu X, Leng Y, Koita O, Rodriguez-Gonzalez S, Kindel M, Matikainen-Ankney BA, Larsen RS, Kravitz AV, Hoon MA, Penzo MA. A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding. Nat Commun 2020;11:6218. [PMID: 33277492 DOI: 10.1038/s41467-020-19980-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
54 Laing BT, Siemian JN, Sarsfield S, Aponte Y. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits. J Neurosci Methods 2021;348:109015. [PMID: 33259847 DOI: 10.1016/j.jneumeth.2020.109015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
55 Wolff M, Morceau S, Folkard R, Martin-Cortecero J, Groh A. A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 2021;120:222-35. [PMID: 33246018 DOI: 10.1016/j.neubiorev.2020.11.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
56 Chisholm A, Rizzo D, Fortin É, Moman V, Quteishat N, Romano A, Capolicchio T, Shalev U. Assessing the Role of Corticothalamic and Thalamo-Accumbens Projections in the Augmentation of Heroin Seeking in Chronically Food-Restricted Rats. J Neurosci 2021;41:354-65. [PMID: 33219004 DOI: 10.1523/JNEUROSCI.2103-20.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
57 Tao Y, Cai CY, Xian JY, Kou XL, Lin YH, Qin C, Wu HY, Chang L, Luo CX, Zhu DY. Projections from Infralimbic Cortex to Paraventricular Thalamus Mediate Fear Extinction Retrieval. Neurosci Bull 2021;37:229-41. [PMID: 33180308 DOI: 10.1007/s12264-020-00603-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
58 Dong X, Li S, Kirouac GJ. A projection from the paraventricular nucleus of the thalamus to the shell of the nucleus accumbens contributes to footshock stress-induced social avoidance. Neurobiol Stress 2020;13:100266. [PMID: 33344719 DOI: 10.1016/j.ynstr.2020.100266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
59 Barson JR, Mack NR, Gao WJ. The Paraventricular Nucleus of the Thalamus Is an Important Node in the Emotional Processing Network. Front Behav Neurosci 2020;14:598469. [PMID: 33192373 DOI: 10.3389/fnbeh.2020.598469] [Cited by in Crossref: 12] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
60 McGinty JF, Otis JM. Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci 2020;14:590528. [PMID: 33177999 DOI: 10.3389/fnbeh.2020.590528] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
61 Munkhzaya U, Chinzorig C, Matsumoto J, Nishimaru H, Ono T, Nishijo H. Rat Paraventricular Neurons Encode Predictive and Incentive Information of Reward Cues. Front Behav Neurosci 2020;14:565002. [PMID: 33033475 DOI: 10.3389/fnbeh.2020.565002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
62 Haight JL, Campus P, Maria-Rios CE, Johnson AM, Klumpner MS, Kuhn BN, Covelo IR, Morrow JD, Flagel SB. The lateral hypothalamus and orexinergic transmission in the paraventricular thalamus promote the attribution of incentive salience to reward-associated cues. Psychopharmacology (Berl) 2020;237:3741-58. [PMID: 32852601 DOI: 10.1007/s00213-020-05651-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
63 Xia SH, Yu J, Huang X, Sesack SR, Huang YH, Schlüter OM, Cao JL, Dong Y. Cortical and Thalamic Interaction with Amygdala-to-Accumbens Synapses. J Neurosci 2020;40:7119-32. [PMID: 32763909 DOI: 10.1523/JNEUROSCI.1121-20.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
64 Bracey EF, Burdakov D. Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiology & Behavior 2020;222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
65 Hill-Bowen LD, Flannery JS, Poudel R. Paraventricular Thalamus Activity during Motivational Conflict Highlights the Nucleus as a Potential Constituent in the Neurocircuitry of Addiction. J Neurosci 2020;40:726-8. [PMID: 31969491 DOI: 10.1523/JNEUROSCI.1945-19.2019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
66 Rodriguez-Romaguera J, Namboodiri VMK, Basiri ML, Stamatakis AM, Stuber GD. Developments from Bulk Optogenetics to Single-Cell Strategies to Dissect the Neural Circuits that Underlie Aberrant Motivational States. Cold Spring Harb Perspect Med 2020:a039792. [PMID: 32513671 DOI: 10.1101/cshperspect.a039792] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
67 Liang HY, Chen ZJ, Xiao H, Lin YH, Hu YY, Chang L, Wu HY, Wang P, Lu W, Zhu DY, Luo CX. nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat Commun 2020;11:2501. [PMID: 32427844 DOI: 10.1038/s41467-020-16198-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
68 Freeman AR, Hare JF, Caldwell HK. Call-specific patterns of neural activation in auditory processing of Richardson's ground squirrel alarm calls. Brain Behav 2020;10:e01629. [PMID: 32307882 DOI: 10.1002/brb3.1629] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Ma L, Chen W, Yu D, Han Y. Brain-Wide Mapping of Afferent Inputs to Accumbens Nucleus Core Subdomains and Accumbens Nucleus Subnuclei. Front Syst Neurosci 2020;14:15. [PMID: 32317941 DOI: 10.3389/fnsys.2020.00015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
70 Lavoie A, Liu BH. Canine Adenovirus 2: A Natural Choice for Brain Circuit Dissection. Front Mol Neurosci 2020;13:9. [PMID: 32174812 DOI: 10.3389/fnmol.2020.00009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
71 Gao C, Leng Y, Ma J, Rooke V, Rodriguez-Gonzalez S, Ramakrishnan C, Deisseroth K, Penzo MA. Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nat Neurosci 2020;23:217-28. [PMID: 31932767 DOI: 10.1038/s41593-019-0572-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 49] [Article Influence: 16.0] [Reference Citation Analysis]
72 McDevitt DS, Graziane NM. Timing of Morphine Administration Differentially Alters Paraventricular Thalamic Neuron Activity. eNeuro 2019;6:ENEURO. [PMID: 31801741 DOI: 10.1523/ENEURO.0377-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]