BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019;102:529-52. [PMID: 31071288 DOI: 10.1016/j.neuron.2019.03.003] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 17.7] [Reference Citation Analysis]
Number Citing Articles
1 Calarco CA, Lobo MK. Depression and substance use disorders: Clinical comorbidity and shared neurobiology. Int Rev Neurobiol 2021;157:245-309. [PMID: 33648671 DOI: 10.1016/bs.irn.2020.09.004] [Reference Citation Analysis]
2 Ferrario CR. Why did I eat that? Contributions of individual differences in incentive motivation and nucleus accumbens plasticity to obesity. Physiology & Behavior 2020;227:113114. [DOI: 10.1016/j.physbeh.2020.113114] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
3 Arttamangkul S, Platt EJ, Carroll J, Farrens D. Functional independence of endogenous µ- and δ-opioid receptors co-expressed in cholinergic interneurons. Elife 2021;10:e69740. [PMID: 34477106 DOI: 10.7554/eLife.69740] [Reference Citation Analysis]
4 Baeuchl C, Kroemer N, Pooseh S, Petzold J, Bitzer S, Thurm F, Li SC, Smolka MN. Reward modulates the association between sensory noise and brain activity during perceptual decision-making. Neuropsychologia 2020;149:107675. [PMID: 33186571 DOI: 10.1016/j.neuropsychologia.2020.107675] [Reference Citation Analysis]
5 Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2022. [PMID: 35710601 DOI: 10.1038/s41386-022-01356-8] [Reference Citation Analysis]
6 Al-Hasani R, Gowrishankar R, Schmitz GP, Pedersen CE, Marcus DJ, Shirley SE, Hobbs TE, Elerding AJ, Renaud SJ, Jing M, Li Y, Alvarez VA, Lemos JC, Bruchas MR. Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat Neurosci 2021. [PMID: 34385700 DOI: 10.1038/s41593-021-00898-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Pantazis CB, Gonzalez LA, Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF. Cues conditioned to withdrawal and negative reinforcement: Neglected but key motivational elements driving opioid addiction. Sci Adv 2021;7:eabf0364. [PMID: 33827822 DOI: 10.1126/sciadv.abf0364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2021. [PMID: 33825217 DOI: 10.1111/ejn.15223] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021;41:863-97. [PMID: 32970288 DOI: 10.1007/s10571-020-00961-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Pignatelli M, Tejeda HA, Barker DJ, Bontempi L, Wu J, Lopez A, Palma Ribeiro S, Lucantonio F, Parise EM, Torres-Berrio A, Alvarez-Bagnarol Y, Marino RAM, Cai ZL, Xue M, Morales M, Tamminga CA, Nestler EJ, Bonci A. Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Mol Psychiatry 2021;26:1860-79. [PMID: 32161361 DOI: 10.1038/s41380-020-0686-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
11 Shapiro LP, Pitts EG, Li DC, Barbee BR, Hinton EA, Bassell GJ, Gross C, Gourley SL. The PI3-Kinase p110β Isoform Controls Severity of Cocaine-Induced Sequelae and Alters the Striatal Transcriptome. Biol Psychiatry 2021;89:959-69. [PMID: 33773752 DOI: 10.1016/j.biopsych.2021.01.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-lara RB, Bravo-rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022;16:796443. [DOI: 10.3389/fncir.2022.796443] [Reference Citation Analysis]
13 Zhang Y, Zhu Y, Cao SX, Sun P, Yang JM, Xia YF, Xie SZ, Yu XD, Fu JY, Shen CJ, He HY, Pan HQ, Chen XJ, Wang H, Li XM. MeCP2 in cholinergic interneurons of nucleus accumbens regulates fear learning. Elife 2020;9:e55342. [PMID: 32420873 DOI: 10.7554/eLife.55342] [Reference Citation Analysis]
14 Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2021;101:213-58. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
15 Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020;98:1046-69. [PMID: 32056298 DOI: 10.1002/jnr.24587] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
16 Parker KE, Pedersen CE, Gomez AM, Spangler SM, Walicki MC, Feng SY, Stewart SL, Otis JM, Al-Hasani R, McCall JG, Sakers K, Bhatti DL, Copits BA, Gereau RW, Jhou T, Kash TJ, Dougherty JD, Stuber GD, Bruchas MR. A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward. Cell 2019;178:653-671.e19. [PMID: 31348890 DOI: 10.1016/j.cell.2019.06.034] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 16.5] [Reference Citation Analysis]
17 Calarco CA, Fox ME, Van Terheyden S, Turner MD, Alipio JB, Chandra R, Lobo MK. Mitochondria-Related Nuclear Gene Expression in the Nucleus Accumbens and Blood Mitochondrial Copy Number After Developmental Fentanyl Exposure in Adolescent Male and Female C57BL/6 Mice. Front Psychiatry 2021;12:737389. [PMID: 34867530 DOI: 10.3389/fpsyt.2021.737389] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Sotelo MI, Tyan J, Dzera J, Eban-rothschild A. Sleep and motivated behaviors, from physiology to pathology. Current Opinion in Physiology 2020;15:159-66. [DOI: 10.1016/j.cophys.2020.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
19 Li J, Orlov N, Wang Z, Jiao B, Wang Y, Xu H, Yang H, Huang Y, Sun Y, Zhang P, Yu R, Liu M, Zhang D. Flexible reconfiguration of functional brain networks as a potential neural mechanism of creativity. Brain Imaging Behav 2021;15:1944-54. [PMID: 32990895 DOI: 10.1007/s11682-020-00388-2] [Reference Citation Analysis]
20 Carlson HN, Murphy C, Pratt WE. Shifting motivational states: The effects of nucleus accumbens dopamine and opioid receptor activation on a modified effort-based choice task. Behav Brain Res 2021;399:112999. [PMID: 33161034 DOI: 10.1016/j.bbr.2020.112999] [Reference Citation Analysis]
21 Saigusa T, Aono Y, Waddington JL. Integrative opioid-GABAergic neuronal mechanisms regulating dopamine efflux in the nucleus accumbens of freely moving animals. Pharmacol Rep 2021;73:971-83. [PMID: 33743175 DOI: 10.1007/s43440-021-00249-9] [Reference Citation Analysis]
22 [DOI: 10.1101/517797] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington's disease. Neurobiol Dis 2020;145:105076. [PMID: 32898646 DOI: 10.1016/j.nbd.2020.105076] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
24 Guo H, Xiao Y, Sun D, Yang J, Wang J, Wang H, Pan C, Li C, Zhao P, Zhang Y, Wu J, Zhang X, Wang F. Early-Stage Repetitive Transcranial Magnetic Stimulation Altered Posterior-Anterior Cerebrum Effective Connectivity in Methylazoxymethanol Acetate Rats. Front Neurosci 2021;15:652715. [PMID: 34093113 DOI: 10.3389/fnins.2021.652715] [Reference Citation Analysis]
25 Fetterly TL, Oginsky MF, Nieto AM, Alonso-Caraballo Y, Santana-Rodriguez Z, Ferrario CR. Insulin Bidirectionally Alters NAc Glutamatergic Transmission: Interactions between Insulin Receptor Activation, Endogenous Opioids, and Glutamate Release. J Neurosci 2021;41:2360-72. [PMID: 33514676 DOI: 10.1523/JNEUROSCI.3216-18.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 McDevitt DS, Jonik B, Graziane NM. Morphine Differentially Alters the Synaptic and Intrinsic Properties of D1R- and D2R-Expressing Medium Spiny Neurons in the Nucleus Accumbens. Front Synaptic Neurosci 2019;11:35. [PMID: 31920618 DOI: 10.3389/fnsyn.2019.00035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
27 Flavell SW, Gogolla N, Lovett-barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022. [DOI: 10.1016/j.neuron.2022.04.030] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Strong CE, Hagarty DP, Brea Guerrero A, Schoepfer KJ, Cajuste SM, Kabbaj M. Chemogenetic selective manipulation of nucleus accumbens medium spiny neurons bidirectionally controls alcohol intake in male and female rats. Sci Rep 2020;10:19178. [PMID: 33154463 DOI: 10.1038/s41598-020-76183-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Luo PX, Zakharenkov HC, Torres LY, Rios RA, Gegenhuber B, Black AM, Xu CK, Minie VA, Tran AM, Tollkuhn J, Trainor BC. Oxytocin receptor behavioral effects and cell types in the bed nucleus of the stria terminalis. Hormones and Behavior 2022;143:105203. [DOI: 10.1016/j.yhbeh.2022.105203] [Reference Citation Analysis]
30 He ZX, Yin YY, Xi K, Xing ZK, Cao JB, Liu TY, Liu L, He XX, Yu HL, Zhu XJ. Nucleus Accumbens Tac1-Expressing Neurons Mediate Stress-Induced Anhedonia-like Behavior in Mice. Cell Rep 2020;33:108343. [PMID: 33147466 DOI: 10.1016/j.celrep.2020.108343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Suarez-Jimenez B, Lazarov A, Zhu X, Pine DS, Bar-Haim Y, Neria Y. Attention allocation to negatively-valenced stimuli in PTSD is associated with reward-related neural pathways. Psychol Med 2022;:1-9. [PMID: 35652602 DOI: 10.1017/S003329172200157X] [Reference Citation Analysis]
32 Xu L, Nan J, Lan Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 2020;14:37. [PMID: 32694984 DOI: 10.3389/fncir.2020.00037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Morse AK, Leung BK, Heath E, Bertran-gonzalez J, Pepin E, Chieng BC, Balleine BW, Laurent V. Basolateral Amygdala Drives a GPCR-Mediated Striatal Memory Necessary for Predictive Learning to Influence Choice. Neuron 2020;106:855-869.e8. [DOI: 10.1016/j.neuron.2020.03.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
34 Sato D, Hamada Y, Narita M, Mori T, Tezuka H, Suda Y, Tanaka K, Yoshida S, Tamura H, Yamanaka A, Senba E, Kuzumaki N, Narita M. Tumor suppression and improvement in immune systems by specific activation of dopamine D1-receptor-expressing neurons in the nucleus accumbens. Mol Brain 2022;15:17. [PMID: 35172858 DOI: 10.1186/s13041-022-00902-1] [Reference Citation Analysis]
35 de Oliveira Alvares L, Do-Monte FH. Understanding the dynamic and destiny of memories. Neurosci Biobehav Rev 2021;125:592-607. [PMID: 33722616 DOI: 10.1016/j.neubiorev.2021.03.009] [Reference Citation Analysis]
36 Laurent V, Balleine BW. How predictive learning influences choice: Evidence for a GPCR-based memory process necessary for Pavlovian-instrumental transfer. J Neurochem 2021;157:1436-49. [PMID: 33662158 DOI: 10.1111/jnc.15339] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Muntean BS, Masuho I, Dao M, Sutton LP, Zucca S, Iwamoto H, Patil DN, Wang D, Birnbaumer L, Blakely RD, Grill B, Martemyanov KA. Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Rep 2021;34:108718. [PMID: 33535037 DOI: 10.1016/j.celrep.2021.108718] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Bao WW, Xu W, Pan GJ, Wang TX, Han Y, Qu WM, Li WX, Huang ZL. Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia. Curr Biol 2021;31:1893-1902.e5. [PMID: 33705720 DOI: 10.1016/j.cub.2021.02.011] [Reference Citation Analysis]
39 Schuman-Olivier Z, Trombka M, Lovas DA, Brewer JA, Vago DR, Gawande R, Dunne JP, Lazar SW, Loucks EB, Fulwiler C. Mindfulness and Behavior Change. Harv Rev Psychiatry 2020;28:371-94. [PMID: 33156156 DOI: 10.1097/HRP.0000000000000277] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Dong X, Li S, Kirouac GJ. A projection from the paraventricular nucleus of the thalamus to the shell of the nucleus accumbens contributes to footshock stress-induced social avoidance. Neurobiol Stress 2020;13:100266. [PMID: 33344719 DOI: 10.1016/j.ynstr.2020.100266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Lindberg I, Glembotski CC. Physiological signaling in the absence of amidated peptides. Proc Natl Acad Sci U S A 2019;116:19774-6. [PMID: 31515450 DOI: 10.1073/pnas.1914001116] [Reference Citation Analysis]
42 Brancato A, Castelli V, Lavanco G, Tringali G, Micale V, Kuchar M, D'Amico C, Pizzolanti G, Feo S, Cannizzaro C. Binge-like Alcohol Exposure in Adolescence: Behavioural, Neuroendocrine and Molecular Evidence of Abnormal Neuroplasticity… and Return. Biomedicines 2021;9:1161. [PMID: 34572345 DOI: 10.3390/biomedicines9091161] [Reference Citation Analysis]
43 Welsch L, Kieffer BL. Opioid peptide signal in the brain makes mice hungrier for reward. Nature 2021;598:568-70. [DOI: 10.1038/d41586-021-02723-z] [Reference Citation Analysis]
44 Engelke DS, Zhang XO, O'Malley JJ, Fernandez-Leon JA, Li S, Kirouac GJ, Beierlein M, Do-Monte FH. A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats. Nat Commun 2021;12:2517. [PMID: 33947849 DOI: 10.1038/s41467-021-22730-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
45 Manz KM, Brady LJ, Calipari ES, Grueter BA. Accumbal Histamine Signaling Engages Discrete Interneuron Microcircuits. Biol Psychiatry 2021:S0006-3223(21)01668-1. [PMID: 34953589 DOI: 10.1016/j.biopsych.2021.10.004] [Reference Citation Analysis]
46 [DOI: 10.1101/2020.01.13.903542] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
47 Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, Tuesta LM, Zhuang X, Zhang Y. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci 2021. [PMID: 34663959 DOI: 10.1038/s41593-021-00938-x] [Reference Citation Analysis]
48 Ma L, Chen W, Yu D, Han Y. Brain-Wide Mapping of Afferent Inputs to Accumbens Nucleus Core Subdomains and Accumbens Nucleus Subnuclei. Front Syst Neurosci 2020;14:15. [PMID: 32317941 DOI: 10.3389/fnsys.2020.00015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
49 Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021;157:1450-72. [PMID: 33420731 DOI: 10.1111/jnc.15297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci 2020;23:1421-32. [PMID: 32989295 DOI: 10.1038/s41593-020-00711-6] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 18.5] [Reference Citation Analysis]
51 Holmgren EB, Wills TA. Regulation of glutamate signaling in the extended amygdala by adolescent alcohol exposure. Int Rev Neurobiol 2021;160:223-50. [PMID: 34696874 DOI: 10.1016/bs.irn.2021.08.004] [Reference Citation Analysis]
52 Joshi A, Faivre F, la Fleur SE, Barrot M. Midbrain and Lateral Nucleus Accumbens Dopamine Depletion Affects Free-choice High-fat high-sugar Diet Preference in Male Rats. Neuroscience 2021;467:171-84. [PMID: 34048800 DOI: 10.1016/j.neuroscience.2021.05.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Wu G, Heck I, Zhang N, Phaup G, Zhang X, Wu Y, Stalla DE, Weng Z, Sun H, Li H, Zhang Z, Ding S, Li DP, Zhang Y. Wireless, battery-free push-pull microsystem for membrane-free neurochemical sampling in freely moving animals. Sci Adv 2022;8:eabn2277. [PMID: 35196090 DOI: 10.1126/sciadv.abn2277] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
54 Covey DP, Yocky AG. Endocannabinoid Modulation of Nucleus Accumbens Microcircuitry and Terminal Dopamine Release. Front Synaptic Neurosci 2021;13:734975. [PMID: 34497503 DOI: 10.3389/fnsyn.2021.734975] [Reference Citation Analysis]
55 Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022. [PMID: 35362070 DOI: 10.1097/ALN.0000000000004148] [Reference Citation Analysis]
56 Karkhanis AN, Al-Hasani R. Dynorphin and its role in alcohol use disorder. Brain Res 2020;1735:146742. [PMID: 32114059 DOI: 10.1016/j.brainres.2020.146742] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
57 Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA 3rd, Bauman AJ, Thukral S, Sultan FA, Goska NA, Ianov L, Day JJ. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv 2020;6:eaba4221. [PMID: 32637607 DOI: 10.1126/sciadv.aba4221] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 13.5] [Reference Citation Analysis]
58 Chen J, Bruchas M. Neuromodulation: A model for dopamine in salience encoding. Curr Biol 2021;31:R1426-9. [PMID: 34752767 DOI: 10.1016/j.cub.2021.09.038] [Reference Citation Analysis]
59 Sosa M, Joo HR, Frank LM. Dorsal and Ventral Hippocampal Sharp-Wave Ripples Activate Distinct Nucleus Accumbens Networks. Neuron 2020;105:725-741.e8. [PMID: 31864947 DOI: 10.1016/j.neuron.2019.11.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
60 Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022;139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Reference Citation Analysis]
61 Raman R, Rousseau EB, Wade M, Tong A, Cotler MJ, Kuang J, Lugo AA, Zhang E, Graybiel AM, White FM, Langer R, Cima MJ. Platform for micro-invasive membrane-free biochemical sampling of brain interstitial fluid. Sci Adv 2020;6:eabb0657. [PMID: 32978160 DOI: 10.1126/sciadv.abb0657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]