BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tye KM. Neural Circuit Motifs in Valence Processing. Neuron 2018;100:436-52. [PMID: 30359607 DOI: 10.1016/j.neuron.2018.10.001] [Cited by in Crossref: 84] [Cited by in F6Publishing: 64] [Article Influence: 28.0] [Reference Citation Analysis]
Number Citing Articles
1 Kearney MG, Warren TL, Hisey E, Qi J, Mooney R. Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds. Neuron 2019;104:559-575.e6. [PMID: 31447169 DOI: 10.1016/j.neuron.2019.07.025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
2 Bigot M, Alonso M, Houenou J, Sarrazin S, Dargél AA, Lledo PM, Henry C. An emotional-response model of bipolar disorders integrating recent findings on amygdala circuits. Neurosci Biobehav Rev 2020;118:358-66. [PMID: 32739421 DOI: 10.1016/j.neubiorev.2020.07.037] [Reference Citation Analysis]
3 Marks WD, Yokose J, Kitamura T, Ogawa SK. Neuronal Ensembles Organize Activity to Generate Contextual Memory. Front Behav Neurosci 2022;16:805132. [DOI: 10.3389/fnbeh.2022.805132] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Liu Z, Le Q, Lv Y, Chen X, Cui J, Zhou Y, Cheng D, Ma C, Su X, Xiao L, Yang R, Zhang J, Ma L, Liu X. A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state. Cell Res 2021. [PMID: 34848869 DOI: 10.1038/s41422-021-00588-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Puccetti NA, Villano WJ, Fadok JP, Heller AS. Temporal dynamics of affect in the brain: Evidence from human imaging and animal models. Neurosci Biobehav Rev 2021;133:104491. [PMID: 34902442 DOI: 10.1016/j.neubiorev.2021.12.014] [Reference Citation Analysis]
6 Goedecke L, Bengoetxea X, Blaesse P, Pape HC, Jüngling K. µ-opioid receptor-mediated downregulation of midline thalamic pathways to basal and central amygdala. Sci Rep 2019;9:17837. [PMID: 31780740 DOI: 10.1038/s41598-019-54128-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
7 Coley AA, Padilla-Coreano N, Patel R, Tye KM. Valence processing in the PFC: Reconciling circuit-level and systems-level views. Int Rev Neurobiol 2021;158:171-212. [PMID: 33785145 DOI: 10.1016/bs.irn.2020.12.002] [Reference Citation Analysis]
8 Luo J, Tan JM, Nithianantharajah J. A molecular insight into the dissociable regulation of associative learning and motivation by the synaptic protein neuroligin-1. BMC Biol 2020;18:118. [PMID: 32921313 DOI: 10.1186/s12915-020-00848-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
9 Lovinger DM, Gremel CM. A Circuit-Based Information Approach to Substance Abuse Research. Trends Neurosci 2021;44:122-35. [PMID: 33168235 DOI: 10.1016/j.tins.2020.10.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Kayyal H, Yiannakas A, Kolatt Chandran S, Khamaisy M, Sharma V, Rosenblum K. Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. J Neurosci 2019;39:9369-82. [PMID: 31597726 DOI: 10.1523/JNEUROSCI.0752-19.2019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 7.7] [Reference Citation Analysis]
11 Grabowska MJ, Jeans R, Steeves J, van Swinderen B. Oscillations in the central brain of Drosophila are phase locked to attended visual features. Proc Natl Acad Sci U S A 2020;117:29925-36. [PMID: 33177231 DOI: 10.1073/pnas.2010749117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kontaris I, East BS, Wilson DA. Behavioral and Neurobiological Convergence of Odor, Mood and Emotion: A Review. Front Behav Neurosci 2020;14:35. [PMID: 32210776 DOI: 10.3389/fnbeh.2020.00035] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
13 Lafferty CK, Yang AK, Mendoza JA, Britt JP. Nucleus Accumbens Cell Type- and Input-Specific Suppression of Unproductive Reward Seeking. Cell Reports 2020;30:3729-3742.e3. [DOI: 10.1016/j.celrep.2020.02.095] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
14 Maruani J, Geoffroy PA. Multi-Level Processes and Retina-Brain Pathways of Photic Regulation of Mood. J Clin Med 2022;11:448. [PMID: 35054142 DOI: 10.3390/jcm11020448] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Luo ZY, Huang L, Lin S, Yin YN, Jie W, Hu NY, Hu YY, Guan YF, Liu JH, You QL, Chen YH, Luo ZC, Zhang SR, Li XW, Yang JM, Tao YM, Mei L, Gao TM. Erbin in Amygdala Parvalbumin-Positive Neurons Modulates Anxiety-like Behaviors. Biol Psychiatry 2020;87:926-36. [PMID: 31889536 DOI: 10.1016/j.biopsych.2019.10.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
16 Mobbs D, Adolphs R, Fanselow MS, Barrett LF, LeDoux JE, Ressler K, Tye KM. Viewpoints: Approaches to defining and investigating fear. Nat Neurosci 2019;22:1205-16. [PMID: 31332374 DOI: 10.1038/s41593-019-0456-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 13.3] [Reference Citation Analysis]
17 Goode TD, Ressler RL, Acca GM, Miles OW, Maren S. Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. Elife 2019;8:e46525. [PMID: 30946011 DOI: 10.7554/eLife.46525] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 9.7] [Reference Citation Analysis]
18 Fawley JA, Hegarty DM, Aicher SA, Beaumont E, Andresen MC. Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus. Brain Res 2021;1769:147625. [PMID: 34416255 DOI: 10.1016/j.brainres.2021.147625] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zai AT, Cavé-Lopez S, Rolland M, Giret N, Hahnloser RHR. Sensory substitution reveals a manipulation bias. Nat Commun 2020;11:5940. [PMID: 33230182 DOI: 10.1038/s41467-020-19686-w] [Reference Citation Analysis]
20 Čeko M, Kragel PA, Woo C, López-solà M, Wager TD. Common and stimulus-type-specific brain representations of negative affect. Nat Neurosci. [DOI: 10.1038/s41593-022-01082-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Lee KM, Ferreira-Santos F, Satpute AB. Predictive processing models and affective neuroscience. Neurosci Biobehav Rev 2021;131:211-28. [PMID: 34517035 DOI: 10.1016/j.neubiorev.2021.09.009] [Reference Citation Analysis]
22 Hogeveen J, Grafman J. Alexithymia. Handb Clin Neurol 2021;183:47-62. [PMID: 34389125 DOI: 10.1016/B978-0-12-822290-4.00004-9] [Reference Citation Analysis]
23 Sonkusare S, Nguyen VT, Moran R, van der Meer J, Ren Y, Koussis N, Dionisio S, Breakspear M, Guo C. Intracranial-EEG evidence for medial temporal pole driving amygdala activity induced by multi-modal emotional stimuli. Cortex 2020;130:32-48. [PMID: 32640373 DOI: 10.1016/j.cortex.2020.05.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Okaty BW, Commons KG, Dymecki SM. Embracing diversity in the 5-HT neuronal system. Nat Rev Neurosci 2019;20:397-424. [PMID: 30948838 DOI: 10.1038/s41583-019-0151-3] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 25.5] [Reference Citation Analysis]
25 Warlow SM, Naffziger EE, Berridge KC. The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain. Nat Commun 2020;11:2716. [PMID: 32483118 DOI: 10.1038/s41467-020-16407-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
26 Scaplen KM, Talay M, Fisher JD, Cohn R, Sorkaç A, Aso Y, Barnea G, Kaun KR. Transsynaptic mapping of Drosophila mushroom body output neurons. Elife 2021;10:e63379. [PMID: 33570489 DOI: 10.7554/eLife.63379] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
27 Sanchez-Arias JC, Carrier M, Frederiksen SD, Shevtsova O, McKee C, van der Slagt E, Gonçalves de Andrade E, Nguyen HL, Young PA, Tremblay MÈ, Swayne LA. A Systematic, Open-Science Framework for Quantification of Cell-Types in Mouse Brain Sections Using Fluorescence Microscopy. Front Neuroanat 2021;15:722443. [PMID: 34949993 DOI: 10.3389/fnana.2021.722443] [Reference Citation Analysis]
28 Zhang X, Guan W, Yang T, Furlan A, Xiao X, Yu K, An X, Galbavy W, Ramakrishnan C, Deisseroth K, Ritola K, Hantman A, He M, Josh Huang Z, Li B. Genetically identified amygdala-striatal circuits for valence-specific behaviors. Nat Neurosci 2021;24:1586-600. [PMID: 34663958 DOI: 10.1038/s41593-021-00927-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Kuhn M, Wendt J, Sjouwerman R, Büchel C, Hamm A, Lonsdorf TB. The Neurofunctional Basis of Affective Startle Modulation in Humans: Evidence From Combined Facial Electromyography and Functional Magnetic Resonance Imaging. Biological Psychiatry 2020;87:548-58. [DOI: 10.1016/j.biopsych.2019.07.028] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
30 Jung S, Lee M, Kim DY, Son C, Ahn BH, Heo G, Park J, Kim M, Park HE, Koo DJ, Park JH, Lee JW, Choe HK, Kim SY. A forebrain neural substrate for behavioral thermoregulation. Neuron 2021:S0896-6273(21)00712-1. [PMID: 34687664 DOI: 10.1016/j.neuron.2021.09.039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Qiu Q, Wu Y, Ma L, Xu W, Hills M Jr, Ramalingam V, Yu CR. Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period. Elife 2021;10:e60546. [PMID: 33769278 DOI: 10.7554/eLife.60546] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Brockett AT, Vázquez D, Roesch MR. Prediction errors and valence: From single units to multidimensional encoding in the amygdala. Behav Brain Res 2021;404:113176. [PMID: 33596433 DOI: 10.1016/j.bbr.2021.113176] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 McMurray KMJ, Gray A, Horn P, Sah R. High Behavioral Sensitivity to Carbon Dioxide Associates with Enhanced Fear Memory and Altered Forebrain Neuronal Activation. Neuroscience 2020;429:92-105. [PMID: 31930959 DOI: 10.1016/j.neuroscience.2019.12.009] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell 2021;184:1500-16. [PMID: 33691140 DOI: 10.1016/j.cell.2021.02.028] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Sotelo MI, Tyan J, Dzera J, Eban-rothschild A. Sleep and motivated behaviors, from physiology to pathology. Current Opinion in Physiology 2020;15:159-66. [DOI: 10.1016/j.cophys.2020.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
36 Xia F, Kheirbek MA. Circuit-Based Biomarkers for Mood and Anxiety Disorders. Trends Neurosci 2020;43:902-15. [PMID: 32917408 DOI: 10.1016/j.tins.2020.08.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
37 Kim J, Lee S, Fang YY, Shin A, Park S, Hashikawa K, Bhat S, Kim D, Sohn JW, Lin D, Suh GSB. Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nat Neurosci 2019;22:576-85. [PMID: 30833699 DOI: 10.1038/s41593-019-0342-2] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 13.3] [Reference Citation Analysis]
38 Tsuda B, Tye KM, Siegelmann HT, Sejnowski TJ. A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex. Proc Natl Acad Sci U S A 2020;117:29872-82. [PMID: 33154155 DOI: 10.1073/pnas.2009591117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Làdavas E, Bertini C. Right Hemisphere Dominance for Unconscious Emotionally Salient Stimuli. Brain Sci 2021;11:823. [PMID: 34206214 DOI: 10.3390/brainsci11070823] [Reference Citation Analysis]
40 Bigot M, Vicq E, Lledo PM, Alonso M, Henry C. Assessing positive and negative valence systems to refine animal models of bipolar disorders: the example of GBR 12909-induced manic phenotype. Sci Rep 2022;12:7364. [PMID: 35513683 DOI: 10.1038/s41598-022-10965-8] [Reference Citation Analysis]
41 Gonzales DL, Zhou J, Fan B, Robinson JT. A microfluidic-induced C. elegans sleep state. Nat Commun 2019;10:5035. [PMID: 31695031 DOI: 10.1038/s41467-019-13008-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
42 Smith DM, Torregrossa MM. Valence encoding in the amygdala influences motivated behavior. Behav Brain Res 2021;411:113370. [PMID: 34051230 DOI: 10.1016/j.bbr.2021.113370] [Reference Citation Analysis]
43 Flavell SW, Gogolla N, Lovett-barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022. [DOI: 10.1016/j.neuron.2022.04.030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Ma M, Futia GL, de Souza FMS, Ozbay BN, Llano I, Gibson EA, Restrepo D. Molecular layer interneurons in the cerebellum encode for valence in associative learning. Nat Commun 2020;11:4217. [PMID: 32868778 DOI: 10.1038/s41467-020-18034-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
45 Meis S, Endres T, Lessmann V. Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 2020;382:161-72. [PMID: 32845430 DOI: 10.1007/s00441-020-03260-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Henry C, Meyrel M, Bigot M, Alonso M, Lledo PM, Dargél AA. Can olfactory dysfunction be a marker of trait or states of bipolar disorders? A comprehensive review. J Affect Disord 2020;266:498-502. [PMID: 32056918 DOI: 10.1016/j.jad.2020.01.081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron. 2019;102:75-90. [PMID: 30946828 DOI: 10.1016/j.neuron.2019.03.013] [Cited by in Crossref: 184] [Cited by in F6Publishing: 172] [Article Influence: 61.3] [Reference Citation Analysis]
48 Vaccaro AG, Kaplan JT, Damasio A. Bittersweet: The Neuroscience of Ambivalent Affect. Perspect Psychol Sci 2020;15:1187-99. [PMID: 32758063 DOI: 10.1177/1745691620927708] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Mallatt J, Feinberg TE. Multiple Routes to Animal Consciousness: Constrained Multiple Realizability Rather Than Modest Identity Theory. Front Psychol 2021;12:732336. [PMID: 34630245 DOI: 10.3389/fpsyg.2021.732336] [Reference Citation Analysis]
50 Tasaka GI, Feigin L, Maor I, Groysman M, DeNardo LA, Schiavo JK, Froemke RC, Luo L, Mizrahi A. The Temporal Association Cortex Plays a Key Role in Auditory-Driven Maternal Plasticity. Neuron 2020;107:566-579.e7. [PMID: 32473095 DOI: 10.1016/j.neuron.2020.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
51 Blair RJ, Zhang R, Bashford-Largo J, Bajaj S, Mathur A, Ringle J, Schwartz A, Elowsky J, Dobbertin M, Blair KS, Tyler PM. Reduced Neural Responsiveness to Looming Stimuli is Associated with Increased Aggression. Soc Cogn Affect Neurosci 2021:nsab058. [PMID: 33960389 DOI: 10.1093/scan/nsab058] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Siciliano CA, Tye KM. Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol 2019;74:47-63. [PMID: 30470589 DOI: 10.1016/j.alcohol.2018.05.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
53 Kanwal JK, Parker J. The neural basis of interspecies interactions in insects. Curr Opin Insect Sci 2022;:100891. [PMID: 35218937 DOI: 10.1016/j.cois.2022.100891] [Reference Citation Analysis]
54 Penzo MA, Gao C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021;44:538-49. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
55 Sakurai T. Social processes and social environment during development. Semin Cell Dev Biol 2021:S1084-9521(21)00251-2. [PMID: 34649805 DOI: 10.1016/j.semcdb.2021.09.016] [Reference Citation Analysis]
56 Li H, Namburi P, Olson JM, Borio M, Lemieux ME, Beyeler A, Calhoon GG, Hitora-Imamura N, Coley AA, Libster A, Bal A, Jin X, Wang H, Jia C, Choudhury SR, Shi X, Felix-Ortiz AC, de la Fuente V, Barth VP, King HO, Izadmehr EM, Revanna JS, Batra K, Fischer KB, Keyes LR, Padilla-Coreano N, Siciliano CA, McCullough KM, Wichmann R, Ressler KJ, Fiete IR, Zhang F, Li Y, Tye KM. Neurotensin orchestrates valence assignment in the amygdala. Nature 2022. [PMID: 35859170 DOI: 10.1038/s41586-022-04964-y] [Reference Citation Analysis]
57 Marcus DJ, Bedse G, Gaulden AD, Ryan JD, Kondev V, Winters ND, Rosas-Vidal LE, Altemus M, Mackie K, Lee FS, Delpire E, Patel S. Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening. Neuron 2020;105:1062-1076.e6. [PMID: 31948734 DOI: 10.1016/j.neuron.2019.12.024] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
58 Illescas-Huerta E, Ramirez-Lugo L, Sierra RO, Quillfeldt JA, Sotres-Bayon F. Conflict Test Battery for Studying the Act of Facing Threats in Pursuit of Rewards. Front Neurosci 2021;15:645769. [PMID: 34017234 DOI: 10.3389/fnins.2021.645769] [Reference Citation Analysis]
59 Bi Y, Huang P, Dong Z, Gao T, Huang S, Gao L, Lv Z. Modified Xiaoyaosan reverses aberrant brain regional homogeneity to exert antidepressive effects in mice. Neuropathology 2019;39:85-96. [DOI: 10.1111/neup.12540] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Shen L, Zhang G, Tao C, Seo MB, Zhang NK, Huang JJ, Zhang LI, Tao HW. A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-28854-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
61 Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci 2019;1457:5-25. [PMID: 30875095 DOI: 10.1111/nyas.14016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
62 Bravo-Rivera C, Sotres-Bayon F. From Isolated Emotional Memories to Their Competition During Conflict. Front Behav Neurosci 2020;14:36. [PMID: 32226364 DOI: 10.3389/fnbeh.2020.00036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
63 Kark SM, Kensinger EA. Post-Encoding Amygdala-Visuosensory Coupling Is Associated with Negative Memory Bias in Healthy Young Adults. J Neurosci 2019;39:3130-43. [PMID: 30760626 DOI: 10.1523/JNEUROSCI.2834-18.2019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
64 [DOI: 10.1101/376228] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
65 Noritake A, Ninomiya T, Isoda M. Subcortical encoding of agent-relevant associative signals for adaptive social behavior in the macaque. Neurosci Biobehav Rev 2021;125:78-87. [PMID: 33609569 DOI: 10.1016/j.neubiorev.2021.02.018] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
66 Carlson HN, Weiner JL. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. Int Rev Neurobiol 2021;157:69-142. [PMID: 33648676 DOI: 10.1016/bs.irn.2020.09.006] [Reference Citation Analysis]
67 Zhang GW, Shen L, Tao C, Jung AH, Peng B, Li Z, Zhang LI, Tao HW. Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nat Neurosci 2021;24:516-28. [PMID: 33526942 DOI: 10.1038/s41593-020-00784-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
68 Ben-Zion Z, Shany O, Admon R, Keynan NJ, Avisdris N, Balter SR, Shalev AY, Liberzon I, Hendler T. Neural Responsivity to Reward versus Punishment Shortly after Trauma Predicts Long-term Development of Post-Traumatic Stress Symptoms. Biol Psychiatry Cogn Neurosci Neuroimaging 2021:S2451-9022(21)00253-6. [PMID: 34534702 DOI: 10.1016/j.bpsc.2021.09.001] [Reference Citation Analysis]
69 Padilla-Coreano N, Tye KM, Zelikowsky M. Dynamic influences on the neural encoding of social valence. Nat Rev Neurosci 2022. [PMID: 35831442 DOI: 10.1038/s41583-022-00609-1] [Reference Citation Analysis]
70 Garau C, Blomeley C, Burdakov D. Orexin neurons and inhibitory Agrp→orexin circuits guide spatial exploration in mice. J Physiol 2020;598:4371-83. [PMID: 32667686 DOI: 10.1113/JP280158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
71 Cho YT, Moujaes F, Schleifer CH, Starc M, Ji JL, Santamauro N, Adkinson B, Kolobaric A, Flynn M, Krystal JH, Murray JD, Repovs G, Anticevic A. Reward and Loss Incentives Improve Spatial Working Memory by Shaping Trial-by-Trial Posterior Frontoparietal Signals. Neuroimage 2022;:119139. [PMID: 35346841 DOI: 10.1016/j.neuroimage.2022.119139] [Reference Citation Analysis]
72 Sias AC, Morse AK, Wang S, Greenfield VY, Goodpaster CM, Wrenn TM, Wikenheiser AM, Holley SM, Cepeda C, Levine MS, Wassum KM. A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. Elife 2021;10:e68617. [PMID: 34142660 DOI: 10.7554/eLife.68617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
73 Chan J, Stout D, Pittenger ST, Picciotto MR, Lewis AS. Induction of reversible bidirectional social approach bias by olfactory conditioning in male mice. Soc Neurosci 2020;15:25-35. [PMID: 31303111 DOI: 10.1080/17470919.2019.1644370] [Reference Citation Analysis]
74 Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2021. [PMID: 33826123 DOI: 10.1007/s13238-021-00834-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
75 Kim J, Kang S, Choi T, Chang K, Koo JW. Metabotropic glutamate receptor 5 in amygdala target neurons regulates susceptibility to chronic social stress. Biological Psychiatry 2022. [DOI: 10.1016/j.biopsych.2022.01.006] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
76 José Olvera M, Miranda MI. Differential effects of NMDA receptors activation in the insular cortex during memory formation and updating of a motivational conflict task. Neuroscience 2022:S0306-4522(22)00105-1. [PMID: 35276308 DOI: 10.1016/j.neuroscience.2022.02.035] [Reference Citation Analysis]
77 Matsuyama HJ, Mori I. Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans. eNeuro 2020;7:ENEURO. [PMID: 32253198 DOI: 10.1523/ENEURO.0414-19.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Xu Y, Lu Y, Cassidy RM, Mangieri LR, Zhu C, Huang X, Jiang Z, Justice NJ, Xu Y, Arenkiel BR, Tong Q. Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nat Commun 2019;10:3446. [PMID: 31371721 DOI: 10.1038/s41467-019-11399-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
79 Agoglia AE, Tella J, Herman MA. Sex differences in corticotropin releasing factor peptide regulation of inhibitory control and excitability in central amygdala corticotropin releasing factor receptor 1-neurons. Neuropharmacology 2020;180:108296. [PMID: 32950560 DOI: 10.1016/j.neuropharm.2020.108296] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
80 Traniello IM, Chen Z, Bagchi VA, Robinson GE. Valence of social information is encoded in different subpopulations of mushroom body Kenyon cells in the honeybee brain. Proc Biol Sci 2019;286:20190901. [PMID: 31506059 DOI: 10.1098/rspb.2019.0901] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
81 de Lacy N, Kutz JN, Calhoun VD. Sex-related differences in brain dynamism at rest as neural correlates of positive and negative valence system constructs. Cogn Neurosci 2021;12:131-54. [PMID: 32715898 DOI: 10.1080/17588928.2020.1793752] [Reference Citation Analysis]
82 Kayyal H, Chandran SK, Yiannakas A, Gould N, Khamaisy M, Rosenblum K. Insula to mPFC reciprocal connectivity differentially underlies novel taste neophobic response and learning in mice. Elife 2021;10:e66686. [PMID: 34219650 DOI: 10.7554/eLife.66686] [Reference Citation Analysis]
83 Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021;109:3576-93. [PMID: 34582784 DOI: 10.1016/j.neuron.2021.08.036] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Mallatt J. A Traditional Scientific Perspective on the Integrated Information Theory of Consciousness. Entropy (Basel) 2021;23:650. [PMID: 34067413 DOI: 10.3390/e23060650] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]