BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee SH, Dan Y. Neuromodulation of brain states. Neuron 2012;76:209-22. [PMID: 23040816 DOI: 10.1016/j.neuron.2012.09.012] [Cited by in Crossref: 323] [Cited by in F6Publishing: 271] [Article Influence: 32.3] [Reference Citation Analysis]
Number Citing Articles
1 Matar E, Shine JM, Halliday GM, Lewis SJG. Cognitive fluctuations in Lewy body dementia: towards a pathophysiological framework. Brain 2020;143:31-46. [DOI: 10.1093/brain/awz311] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
2 Mizuyama R, Soma S, Suemastu N, Shimegi S. Noradrenaline Improves Behavioral Contrast Sensitivity via the β-Adrenergic Receptor. PLoS One 2016;11:e0168455. [PMID: 27992510 DOI: 10.1371/journal.pone.0168455] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
3 Panzeri S, Safaai H, De Feo V, Vato A. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces. Front Neurosci 2016;10:165. [PMID: 27147955 DOI: 10.3389/fnins.2016.00165] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
4 Hutson PH, Tarazi FI, Madhoo M, Slawecki C, Patkar AA. Preclinical pharmacology of amphetamine: Implications for the treatment of neuropsychiatric disorders. Pharmacology & Therapeutics 2014;143:253-64. [DOI: 10.1016/j.pharmthera.2014.03.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
5 Eydipour Z, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. The role of 5-HT4 serotonin receptors in the CA1 hippocampal region on memory acquisition impairment induced by total (TSD) and REM sleep deprivation (RSD). Physiol Behav 2020;215:112788. [PMID: 31863855 DOI: 10.1016/j.physbeh.2019.112788] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
6 Peter-derex L. Sonno normale. EMC - Neurologia 2018;18:1-9. [DOI: 10.1016/s1634-7072(18)91374-7] [Reference Citation Analysis]
7 Rasmussen R, Yonehara K. Circuit Mechanisms Governing Local vs. Global Motion Processing in Mouse Visual Cortex. Front Neural Circuits 2017;11:109. [PMID: 29311845 DOI: 10.3389/fncir.2017.00109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
8 Miotti R. Variety of pronunciation models in European and American teaching or (self-)learning manuals of pronunciation for non-native speakers of Spanish. loquens 2018;5:049. [DOI: 10.3989/loquens.2018.049] [Reference Citation Analysis]
9 Buckley CL, Toyoizumi T. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback. PLoS Comput Biol 2018;14:e1005926. [PMID: 29342146 DOI: 10.1371/journal.pcbi.1005926] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
10 Messer M, Costa KM, Roeper J, Schneider G. Multi-scale detection of rate changes in spike trains with weak dependencies. J Comput Neurosci 2017;42:187-201. [PMID: 28025784 DOI: 10.1007/s10827-016-0635-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Markram H, Muller E, Ramaswamy S, Reimann M, Abdellah M, Sanchez C, Ailamaki A, Alonso-nanclares L, Antille N, Arsever S, Kahou G, Berger T, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol J, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert M, Ghobril J, Gidon A, Graham J, Gupta A, Haenel V, Hay E, Heinis T, Hernando J, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King J, Kisvarday Z, Kumbhar P, Lasserre S, Le bé J, Magalhães B, Merchán-pérez A, Meystre J, Morrice B, Muller J, Muñoz-céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton T, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez J, Riquelme J, Rössert C, Sfyrakis K, Shi Y, Shillcock J, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-rodriguez M, Tränkler T, Van geit W, Díaz J, Walker R, Wang Y, Zaninetta S, Defelipe J, Hill S, Segev I, Schürmann F. Reconstruction and Simulation of Neocortical Microcircuitry. Cell 2015;163:456-92. [DOI: 10.1016/j.cell.2015.09.029] [Cited by in Crossref: 739] [Cited by in F6Publishing: 479] [Article Influence: 105.6] [Reference Citation Analysis]
12 White RS, Spencer RM, Nusbaum MP, Blitz DM. State-dependent sensorimotor gating in a rhythmic motor system. J Neurophysiol 2017;118:2806-18. [PMID: 28814634 DOI: 10.1152/jn.00420.2017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
13 Vyazovskiy VV. Neuroscience. Mapping the birth of the sleep connectome. Science 2015;350:909-10. [PMID: 26586746 DOI: 10.1126/science.aad6489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
14 Puccetti NA, Villano WJ, Fadok JP, Heller AS. Temporal dynamics of affect in the brain: Evidence from human imaging and animal models. Neurosci Biobehav Rev 2021;133:104491. [PMID: 34902442 DOI: 10.1016/j.neubiorev.2021.12.014] [Reference Citation Analysis]
15 Mei J, Muller E, Ramaswamy S. Informing deep neural networks by multiscale principles of neuromodulatory systems. Trends in Neurosciences 2022. [DOI: 10.1016/j.tins.2021.12.008] [Reference Citation Analysis]
16 O'Donnell J, Ding F, Nedergaard M. Distinct functional states of astrocytes during sleep and wakefulness: Is norepinephrine the master regulator? Curr Sleep Med Rep 2015;1:1-8. [PMID: 26618103 DOI: 10.1007/s40675-014-0004-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
17 Sellers KK, Bennett DV, Fröhlich F. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing. Brain Res 2015;1598:31-45. [PMID: 25498982 DOI: 10.1016/j.brainres.2014.12.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
18 Varela C. Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 2014;8:69. [PMID: 25009467 DOI: 10.3389/fncir.2014.00069] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 7.4] [Reference Citation Analysis]
19 Rho HJ, Kim JH, Lee SH. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front Neural Circuits 2018;12:47. [PMID: 29988373 DOI: 10.3389/fncir.2018.00047] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
20 McGinley MJ, David SV, McCormick DA. Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection. Neuron 2015;87:179-92. [PMID: 26074005 DOI: 10.1016/j.neuron.2015.05.038] [Cited by in Crossref: 354] [Cited by in F6Publishing: 285] [Article Influence: 50.6] [Reference Citation Analysis]
21 Ma S, Allocca G, Ong-Pålsson EK, Singleton CE, Hawkes D, McDougall SJ, Williams SJ, Bathgate RA, Gundlach AL. Nucleus incertus promotes cortical desynchronization and behavioral arousal. Brain Struct Funct 2017;222:515-37. [PMID: 27206427 DOI: 10.1007/s00429-016-1230-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
22 Fujita H, Kodama T, du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife 2020;9:e58613. [PMID: 32639229 DOI: 10.7554/eLife.58613] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
23 Zagha E. Shaping the Cortical Landscape: Functions and Mechanisms of Top-Down Cortical Feedback Pathways. Front Syst Neurosci 2020;14:33. [PMID: 32587506 DOI: 10.3389/fnsys.2020.00033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Vu MT, Du G, Bayliss DA, Horner RL. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine. J Neurosci 2015;35:13555-67. [PMID: 26446210 DOI: 10.1523/JNEUROSCI.1445-15.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
25 Megemont M, McBurney-Lin J, Yang H. Pupil diameter is not an accurate real-time readout of locus coeruleus activity. Elife 2022;11:e70510. [PMID: 35107419 DOI: 10.7554/eLife.70510] [Reference Citation Analysis]
26 Hotta H. Neurogenic control of parenchymal arterioles in the cerebral cortex. New Horizons in Neurovascular Coupling: A Bridge Between Brain Circulation and Neural Plasticity. Elsevier; 2016. pp. 3-39. [DOI: 10.1016/bs.pbr.2016.03.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
27 Pantoja C, Hoagland A, Carroll EC, Karalis V, Conner A, Isacoff EY. Neuromodulatory Regulation of Behavioral Individuality in Zebrafish. Neuron 2016;91:587-601. [PMID: 27397519 DOI: 10.1016/j.neuron.2016.06.016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 5.7] [Reference Citation Analysis]
28 Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea AE, Simpraga S, Houtman SJ, Poil SS, Dallares E, Palva S, Oranje B, Matias Palva J, Mansvelder HD, Linkenkaer-Hansen K. Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci Rep 2020;10:9195. [PMID: 32513931 DOI: 10.1038/s41598-020-65500-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
29 McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, McCormick DA. Waking State: Rapid Variations Modulate Neural and Behavioral Responses. Neuron 2015;87:1143-61. [PMID: 26402600 DOI: 10.1016/j.neuron.2015.09.012] [Cited by in Crossref: 369] [Cited by in F6Publishing: 279] [Article Influence: 52.7] [Reference Citation Analysis]
30 Mamad O, McNamara HM, Reilly RB, Tsanov M. Medial septum regulates the hippocampal spatial representation. Front Behav Neurosci 2015;9:166. [PMID: 26175674 DOI: 10.3389/fnbeh.2015.00166] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
31 Gutierrez-Barragan D, Singh NA, Alvino FG, Coletta L, Rocchi F, De Guzman E, Galbusera A, Uboldi M, Panzeri S, Gozzi A. Unique spatiotemporal fMRI dynamics in the awake mouse brain. Curr Biol 2022;32:631-644.e6. [PMID: 34998465 DOI: 10.1016/j.cub.2021.12.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Fazlali Z, Ranjbar-Slamloo Y, Adibi M, Arabzadeh E. Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex. Front Neural Circuits 2016;10:14. [PMID: 27047339 DOI: 10.3389/fncir.2016.00014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
33 Rasmussen R, Jensen MH, Heltberg ML. Chaotic Dynamics Mediate Brain State Transitions, Driven by Changes in Extracellular Ion Concentrations. Cell Syst 2017;5:591-603.e4. [PMID: 29248375 DOI: 10.1016/j.cels.2017.11.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
34 Bellot-Saez A, Cohen G, van Schaik A, Ooi L, W Morley J, Buskila Y. Astrocytic modulation of cortical oscillations. Sci Rep 2018;8:11565. [PMID: 30068965 DOI: 10.1038/s41598-018-30003-w] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
35 Scarpetta S, Apicella I, Minati L, de Candia A. Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network. Phys Rev E 2018;97. [DOI: 10.1103/physreve.97.062305] [Cited by in Crossref: 27] [Cited by in F6Publishing: 7] [Article Influence: 6.8] [Reference Citation Analysis]
36 [DOI: 10.1101/714923] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Goyal A, Miller J, Watrous AJ, Lee SA, Coffey T, Sperling MR, Sharan A, Worrell G, Berry B, Lega B, Jobst BC, Davis KA, Inman C, Sheth SA, Wanda PA, Ezzyat Y, Das SR, Stein J, Gorniak R, Jacobs J. Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory. J Neurosci 2018;38:4471-81. [PMID: 29636396 DOI: 10.1523/JNEUROSCI.3049-17.2018] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
38 Chen Z, Wimmer RD, Wilson MA, Halassa MM. Thalamic Circuit Mechanisms Link Sensory Processing in Sleep and Attention. Front Neural Circuits 2015;9:83. [PMID: 26778969 DOI: 10.3389/fncir.2015.00083] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
39 Schriver BJ, Perkins SM, Sajda P, Wang Q. Interplay between components of pupil-linked phasic arousal and its role in driving behavioral choice in Go/No-Go perceptual decision-making. Psychophysiology 2020;57:e13565. [PMID: 32227366 DOI: 10.1111/psyp.13565] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Shimegi S, Kimura A, Sato A, Aoyama C, Mizuyama R, Tsunoda K, Ueda F, Araki S, Goya R, Sato H. Cholinergic and serotonergic modulation of visual information processing in monkey V1. J Physiol Paris 2016;110:44-51. [PMID: 27619519 DOI: 10.1016/j.jphysparis.2016.09.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
41 Sheroziya M, Timofeev I. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation. J Neurosci 2015;35:13006-19. [PMID: 26400932 DOI: 10.1523/JNEUROSCI.1359-15.2015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
42 Li Z, Meng J, Li H, Jin A, Tang Q, Zhu J, Yu H. The feature-specific propagation of orientation and direction adaptation from areas 17 to 21a in cats. Sci Rep 2017;7:390. [PMID: 28341863 DOI: 10.1038/s41598-017-00419-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
43 Wall EM, Woolley SC. Acetylcholine in action. Elife 2020;9:e57515. [PMID: 32425156 DOI: 10.7554/eLife.57515] [Reference Citation Analysis]
44 Das A, Narayanan R. Theta-frequency selectivity in the somatic spike-triggered average of rat hippocampal pyramidal neurons is dependent on HCN channels. J Neurophysiol 2017;118:2251-66. [PMID: 28768741 DOI: 10.1152/jn.00356.2017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
45 Gao S, Proekt A, Renier N, Calderon DP, Pfaff DW. Activating an anterior nucleus gigantocellularis subpopulation triggers emergence from pharmacologically-induced coma in rodents. Nat Commun 2019;10:2897. [PMID: 31263107 DOI: 10.1038/s41467-019-10797-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
46 Borderies N, Bornert P, Gilardeau S, Bouret S. Pharmacological evidence for the implication of noradrenaline in effort. PLoS Biol 2020;18:e3000793. [PMID: 33044952 DOI: 10.1371/journal.pbio.3000793] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Khan AG, Hofer SB. Contextual signals in visual cortex. Curr Opin Neurobiol 2018;52:131-8. [PMID: 29883940 DOI: 10.1016/j.conb.2018.05.003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
48 Van Pottelbergh T, Drion G, Sepulchre R. Robust Modulation of Integrate-and-Fire Models. Neural Comput 2018;30:987-1011. [PMID: 29381445 DOI: 10.1162/neco_a_01065] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
49 Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 2014;84:355-62. [PMID: 25374359 DOI: 10.1016/j.neuron.2014.09.033] [Cited by in Crossref: 352] [Cited by in F6Publishing: 277] [Article Influence: 44.0] [Reference Citation Analysis]
50 Pillay S, Vizuete J, Liu X, Juhasz G, Hudetz AG. Brainstem stimulation augments information integration in the cerebral cortex of desflurane-anesthetized rats. Front Integr Neurosci 2014;8:8. [PMID: 24605091 DOI: 10.3389/fnint.2014.00008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
51 Langille JJ. Remembering to Forget: A Dual Role for Sleep Oscillations in Memory Consolidation and Forgetting. Front Cell Neurosci 2019;13:71. [PMID: 30930746 DOI: 10.3389/fncel.2019.00071] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
52 Zhuang J, Bereshpolova Y, Stoelzel CR, Huff JM, Hei X, Alonso JM, Swadlow HA. Brain state effects on layer 4 of the awake visual cortex. J Neurosci 2014;34:3888-900. [PMID: 24623767 DOI: 10.1523/JNEUROSCI.4969-13.2014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
53 Schwalm M, Rosales Jubal E. Back to Pupillometry: How Cortical Network State Fluctuations Tracked by Pupil Dynamics Could Explain Neural Signal Variability in Human Cognitive Neuroscience. eNeuro 2017;4:ENEURO. [PMID: 29379876 DOI: 10.1523/ENEURO.0293-16.2017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.4] [Reference Citation Analysis]
54 Sacharz J, Wesełucha-Birczyńska A, Zięba-Palus J, Lewandowski MH, Kowalski R, Palus K, Chrobok Ł, Moskal P, Birczyńska M, Sozańska A. Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2018;188:581-8. [PMID: 28772144 DOI: 10.1016/j.saa.2017.07.046] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
55 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
56 Zagha E, McCormick DA. Neural control of brain state. Curr Opin Neurobiol 2014;29:178-86. [PMID: 25310628 DOI: 10.1016/j.conb.2014.09.010] [Cited by in Crossref: 89] [Cited by in F6Publishing: 72] [Article Influence: 11.1] [Reference Citation Analysis]
57 Busse L. The influence of locomotion on sensory processing and its underlying neuronal circuits. e-Neuroforum 2018;24:A41-51. [DOI: 10.1515/nf-2017-a046] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
58 Gaffield MA, Christie JM. Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons. J Neurosci 2017;37:4751-65. [PMID: 28389475 DOI: 10.1523/JNEUROSCI.0534-17.2017] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 6.2] [Reference Citation Analysis]
59 Stuart GJ, Spruston N. Dendritic integration: 60 years of progress. Nat Neurosci 2015;18:1713-21. [PMID: 26605882 DOI: 10.1038/nn.4157] [Cited by in Crossref: 215] [Cited by in F6Publishing: 167] [Article Influence: 30.7] [Reference Citation Analysis]
60 Brzosko Z, Mierau SB, Paulsen O. Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future. Neuron 2019;103:563-81. [DOI: 10.1016/j.neuron.2019.05.041] [Cited by in Crossref: 54] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
61 Oliveira JF, Araque A. Astrocyte regulation of neural circuit activity and network states. Glia 2022. [PMID: 35460131 DOI: 10.1002/glia.24178] [Reference Citation Analysis]
62 King DR, de Chastelaine M, Rugg MD. Recollection-related increases in functional connectivity across the healthy adult lifespan. Neurobiol Aging 2018;62:1-19. [PMID: 29101898 DOI: 10.1016/j.neurobiolaging.2017.09.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
63 Belloy ME, Billings J, Abbas A, Kashyap A, Pan WJ, Hinz R, Vanreusel V, Van Audekerke J, Van der Linden A, Keilholz SD, Verhoye M, Keliris GA. Resting Brain Fluctuations Are Intrinsically Coupled to Visual Response Dynamics. Cereb Cortex 2021;31:1511-22. [PMID: 33108464 DOI: 10.1093/cercor/bhaa305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
64 Shao YF, Lin JS, Hou YP. Paraventricular Thalamus as A Major Thalamic Structure for Wake Control. Neurosci Bull 2019;35:946-8. [PMID: 30879175 DOI: 10.1007/s12264-019-00364-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
65 Gleiss S, Kayser C. Acoustic noise improves visual perception and modulates occipital oscillatory states. J Cogn Neurosci 2014;26:699-711. [PMID: 24236698 DOI: 10.1162/jocn_a_00524] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
66 Lustenberger C, Boyle MR, Alagapan S, Mellin JM, Vaughn BV, Fröhlich F. Feedback-Controlled Transcranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory Consolidation. Curr Biol 2016;26:2127-36. [PMID: 27476602 DOI: 10.1016/j.cub.2016.06.044] [Cited by in Crossref: 121] [Cited by in F6Publishing: 112] [Article Influence: 20.2] [Reference Citation Analysis]
67 Lu HW, Trussell LO. Spontaneous Activity Defines Effective Convergence Ratios in an Inhibitory Circuit. J Neurosci 2016;36:3268-80. [PMID: 26985036 DOI: 10.1523/JNEUROSCI.3499-15.2016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
68 Zerbi V, Floriou-servou A, Markicevic M, Vermeiren Y, Sturman O, Privitera M, von Ziegler L, Ferrari KD, Weber B, De Deyn PP, Wenderoth N, Bohacek J. Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron 2019;103:702-718.e5. [DOI: 10.1016/j.neuron.2019.05.034] [Cited by in Crossref: 72] [Cited by in F6Publishing: 60] [Article Influence: 24.0] [Reference Citation Analysis]
69 Barbero-Castillo A, Riefolo F, Matera C, Caldas-Martínez S, Mateos-Aparicio P, Weinert JF, Garrido-Charles A, Claro E, Sanchez-Vives MV, Gorostiza P. Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist. Adv Sci (Weinh) 2021;8:e2005027. [PMID: 34018704 DOI: 10.1002/advs.202005027] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Allen WE, Chen MZ, Pichamoorthy N, Tien RH, Pachitariu M, Luo L, Deisseroth K. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 2019;364:253. [PMID: 30948440 DOI: 10.1126/science.aav3932] [Cited by in F6Publishing: 48] [Reference Citation Analysis]
71 Gründemann J, Bitterman Y, Lu T, Krabbe S, Grewe BF, Schnitzer MJ, Lüthi A. Amygdala ensembles encode behavioral states. Science 2019;364:eaav8736. [PMID: 31000636 DOI: 10.1126/science.aav8736] [Cited by in Crossref: 53] [Cited by in F6Publishing: 38] [Article Influence: 17.7] [Reference Citation Analysis]
72 Ruiz F, Castelletto ML, Gang SS, Hallem EA. Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus. PLoS Pathog 2017;13:e1006709. [PMID: 29190282 DOI: 10.1371/journal.ppat.1006709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
73 Drion G, Dethier J, Franci A, Sepulchre R. Switchable slow cellular conductances determine robustness and tunability of network states. PLoS Comput Biol 2018;14:e1006125. [PMID: 29684009 DOI: 10.1371/journal.pcbi.1006125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
74 Gardner RJ, Kersanté F, Jones MW, Bartsch U. Neural oscillations during non-rapid eye movement sleep as biomarkers of circuit dysfunction in schizophrenia. Eur J Neurosci 2014;39:1091-106. [DOI: 10.1111/ejn.12533] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
75 Giorgi A, Migliarini S, Galbusera A, Maddaloni G, Mereu M, Margiani G, Gritti M, Landi S, Trovato F, Bertozzi SM, Armirotti A, Ratto GM, De Luca MA, Tonini R, Gozzi A, Pasqualetti M. Brain-wide Mapping of Endogenous Serotonergic Transmission via Chemogenetic fMRI. Cell Reports 2017;21:910-8. [DOI: 10.1016/j.celrep.2017.09.087] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 9.4] [Reference Citation Analysis]
76 Tagliazucchi E, Crossley N, Bullmore ET, Laufs H. Deep sleep divides the cortex into opposite modes of anatomical-functional coupling. Brain Struct Funct 2016;221:4221-34. [PMID: 26650048 DOI: 10.1007/s00429-015-1162-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
77 Vijayraghavan S, Everling S. Neuromodulation of Persistent Activity and Working Memory Circuitry in Primate Prefrontal Cortex by Muscarinic Receptors. Front Neural Circuits 2021;15:648624. [PMID: 33790746 DOI: 10.3389/fncir.2021.648624] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 McKillop LE, Vyazovskiy VV. Sleep- and Wake-Like States in Small Networks In Vivo and In Vitro. Handb Exp Pharmacol 2019;253:97-121. [PMID: 30443784 DOI: 10.1007/164_2018_174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Cheng N, Murari K. OSERR: an open-source standalone electrophysiology recording system for rodents. Sci Rep 2020;10:16996. [PMID: 33046761 DOI: 10.1038/s41598-020-73797-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Coulon P, Landisman CE. The Potential Role of Gap Junctional Plasticity in the Regulation of State. Neuron 2017;93:1275-95. [PMID: 28334604 DOI: 10.1016/j.neuron.2017.02.041] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
81 Cary BA, Turrigiano GG. Stability of neocortical synapses across sleep and wake states during the critical period in rats. Elife 2021;10:e66304. [PMID: 34151775 DOI: 10.7554/eLife.66304] [Reference Citation Analysis]
82 Noseda R, Lee AJ, Nir RR, Bernstein CA, Kainz VM, Bertisch SM, Buettner C, Borsook D, Burstein R. Neural mechanism for hypothalamic-mediated autonomic responses to light during migraine. Proc Natl Acad Sci U S A 2017;114:E5683-92. [PMID: 28652355 DOI: 10.1073/pnas.1708361114] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
83 Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage 2016;140:4-19. [DOI: 10.1016/j.neuroimage.2016.02.012] [Cited by in Crossref: 142] [Cited by in F6Publishing: 136] [Article Influence: 23.7] [Reference Citation Analysis]
84 Basak R, Narayanan R. Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS Comput Biol 2018;14:e1006485. [PMID: 30383745 DOI: 10.1371/journal.pcbi.1006485] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
85 Schwalm M, Easton C. Cortical Temperature Change: A Tool for Modulating Brain States? eNeuro 2016;3:ENEURO. [PMID: 27390773 DOI: 10.1523/ENEURO.0096-16.2016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
86 Clancy KB, Mrsic-Flogel TD. The sensory representation of causally controlled objects. Neuron 2021;109:677-689.e4. [PMID: 33357383 DOI: 10.1016/j.neuron.2020.12.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
87 Kim K, Kim JH, Song YH, Lee SH. Functional dissection of inhibitory microcircuits in the visual cortex. Neurosci Res 2017;116:70-6. [PMID: 27633836 DOI: 10.1016/j.neures.2016.09.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
88 Hulse BK, Lubenov EV, Siapas AG. Brain State Dependence of Hippocampal Subthreshold Activity in Awake Mice. Cell Rep 2017;18:136-47. [PMID: 28052244 DOI: 10.1016/j.celrep.2016.11.084] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
89 Tsanov M. Speed and Oscillations: Medial Septum Integration of Attention and Navigation. Front Syst Neurosci 2017;11:67. [PMID: 28979196 DOI: 10.3389/fnsys.2017.00067] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
90 Jacquerie K, Drion G. Robust switches in thalamic network activity require a timescale separation between sodium and T-type calcium channel activations. PLoS Comput Biol 2021;17:e1008997. [PMID: 34003841 DOI: 10.1371/journal.pcbi.1008997] [Reference Citation Analysis]
91 Ros T, J Baars B, Lanius RA, Vuilleumier P. Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front Hum Neurosci 2014;8:1008. [PMID: 25566028 DOI: 10.3389/fnhum.2014.01008] [Cited by in Crossref: 95] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
92 Scheler G. Neuromodulation influences synchronization and intrinsic read-out. F1000Res 2018;7:1277. [PMID: 30906524 DOI: 10.12688/f1000research.15804.2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
93 Kim JH, Ma DH, Jung E, Choi I, Lee SH. Gated feedforward inhibition in the frontal cortex releases goal-directed action. Nat Neurosci 2021;24:1452-64. [PMID: 34413512 DOI: 10.1038/s41593-021-00910-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Taschenberger H, Woehler A, Neher E. Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength. Proc Natl Acad Sci U S A 2016;113:E4548-57. [PMID: 27432975 DOI: 10.1073/pnas.1606383113] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 9.3] [Reference Citation Analysis]
95 Pfeffer T, Avramiea AE, Nolte G, Engel AK, Linkenkaer-Hansen K, Donner TH. Catecholamines alter the intrinsic variability of cortical population activity and perception. PLoS Biol 2018;16:e2003453. [PMID: 29420565 DOI: 10.1371/journal.pbio.2003453] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
96 Bellot-Saez A, Stevenson R, Kékesi O, Samokhina E, Ben-Abu Y, Morley JW, Buskila Y. Neuromodulation of Astrocytic K+ Clearance. Int J Mol Sci 2021;22:2520. [PMID: 33802343 DOI: 10.3390/ijms22052520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CC. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 2013;80:1477-90. [PMID: 24360548 DOI: 10.1016/j.neuron.2013.10.059] [Cited by in Crossref: 112] [Cited by in F6Publishing: 102] [Article Influence: 14.0] [Reference Citation Analysis]
98 Yin X, Jones N, Yang J, Asraoui N, Mathieu ME, Cai L, Chen SX. Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation. Nat Neurosci 2021;24:646-57. [PMID: 33753944 DOI: 10.1038/s41593-021-00815-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Hayat H, Regev N, Matosevich N, Sales A, Paredes-Rodriguez E, Krom AJ, Bergman L, Li Y, Lavigne M, Kremer EJ, Yizhar O, Pickering AE, Nir Y. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci Adv 2020;6:eaaz4232. [PMID: 32285002 DOI: 10.1126/sciadv.aaz4232] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
100 Adapa R. Consciousness and Anesthesia. In: Absalom AR, Mason KP, editors. Total Intravenous Anesthesia and Target Controlled Infusions. Cham: Springer International Publishing; 2017. pp. 63-78. [DOI: 10.1007/978-3-319-47609-4_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
101 Brown R, Lam AD, Gonzalez-Sulser A, Ying A, Jones M, Chou RC, Tzioras M, Jordan CY, Jedrasiak-Cape I, Hemonnot AL, Abou Jaoude M, Cole AJ, Cash SS, Saito T, Saido T, Ribchester RR, Hashemi K, Oren I. Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease. eNeuro 2018;5:ENEURO. [PMID: 29780880 DOI: 10.1523/ENEURO.0426-17.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
102 Lawson RP, Bisby J, Nord CL, Burgess N, Rees G. The Computational, Pharmacological, and Physiological Determinants of Sensory Learning under Uncertainty. Curr Biol 2021;31:163-172.e4. [PMID: 33188745 DOI: 10.1016/j.cub.2020.10.043] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
103 Takeishi A, Yeon J, Harris N, Yang W, Sengupta P. Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity. Elife 2020;9:e61167. [PMID: 33074105 DOI: 10.7554/eLife.61167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
104 Krishnamurthy P, Silberberg G, Lansner A. Long-range recruitment of Martinotti cells causes surround suppression and promotes saliency in an attractor network model. Front Neural Circuits 2015;9:60. [PMID: 26528143 DOI: 10.3389/fncir.2015.00060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
105 Augustin M, Ladenbauer J, Obermayer K. How adaptation shapes spike rate oscillations in recurrent neuronal networks. Front Comput Neurosci 2013;7:9. [PMID: 23450654 DOI: 10.3389/fncom.2013.00009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
106 Rowan CC, Graudejus O, Otchy TM. A Microclip Peripheral Nerve Interface (μcPNI) for Bioelectronic Interfacing with Small Nerves. Adv Sci (Weinh) 2021;:e2102945. [PMID: 34837353 DOI: 10.1002/advs.202102945] [Reference Citation Analysis]
107 Pantoja C, Larsch J, Laurell E, Marquart G, Kunst M, Baier H. Rapid Effects of Selection on Brain-wide Activity and Behavior. Curr Biol 2020;30:3647-3656.e3. [PMID: 32763165 DOI: 10.1016/j.cub.2020.06.086] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
108 Kloosterman NA, Meindertsma T, van Loon AM, Lamme VA, Bonneh YS, Donner TH. Pupil size tracks perceptual content and surprise. Eur J Neurosci 2015;41:1068-78. [PMID: 25754528 DOI: 10.1111/ejn.12859] [Cited by in Crossref: 77] [Cited by in F6Publishing: 53] [Article Influence: 11.0] [Reference Citation Analysis]
109 Guillermin ML, Carrillo MA, Hallem EA. A Single Set of Interneurons Drives Opposite Behaviors in C. elegans. Curr Biol 2017;27:2630-2639.e6. [PMID: 28823678 DOI: 10.1016/j.cub.2017.07.023] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
110 Nur T, Gautam SH, Stenken JA, Shew WL. Probing spatial inhomogeneity of cholinergic changes in cortical state in rat. Sci Rep 2019;9:9387. [PMID: 31253814 DOI: 10.1038/s41598-019-45826-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
111 Panzeri S, Macke JH, Gross J, Kayser C. Neural population coding: combining insights from microscopic and mass signals. Trends Cogn Sci 2015;19:162-72. [PMID: 25670005 DOI: 10.1016/j.tics.2015.01.002] [Cited by in Crossref: 115] [Cited by in F6Publishing: 81] [Article Influence: 16.4] [Reference Citation Analysis]
112 Kim K, Müller MLTM, Bohnen NI, Sarter M, Lustig C. The cortical cholinergic system contributes to the top-down control of distraction: Evidence from patients with Parkinson's disease. Neuroimage 2019;190:107-17. [PMID: 29277400 DOI: 10.1016/j.neuroimage.2017.12.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
113 Torrado Pacheco A, Bottorff J, Gao Y, Turrigiano GG. Sleep Promotes Downward Firing Rate Homeostasis. Neuron 2021;109:530-544.e6. [PMID: 33232655 DOI: 10.1016/j.neuron.2020.11.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
114 Vyazovskiy VV. Sleep, recovery, and metaregulation: explaining the benefits of sleep. Nat Sci Sleep 2015;7:171-84. [PMID: 26719733 DOI: 10.2147/NSS.S54036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
115 Zapukhliak O, Netsyk O, Romanov A, Maximyuk O, Oz M, Holmes GL, Krishtal O, Isaev D. Mecamylamine inhibits seizure-like activity in CA1-CA3 hippocampus through antagonism to nicotinic receptors. PLoS One 2021;16:e0240074. [PMID: 33711021 DOI: 10.1371/journal.pone.0240074] [Reference Citation Analysis]
116 Poorthuis RB, Enke L, Letzkus JJ. Cholinergic circuit modulation through differential recruitment of neocortical interneuron types during behaviour. J Physiol 2014;592:4155-64. [PMID: 24879871 DOI: 10.1113/jphysiol.2014.273862] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
117 Roberts LE, Husain FT, Eggermont JJ. Role of attention in the generation and modulation of tinnitus. Neuroscience & Biobehavioral Reviews 2013;37:1754-73. [DOI: 10.1016/j.neubiorev.2013.07.007] [Cited by in Crossref: 101] [Cited by in F6Publishing: 87] [Article Influence: 11.2] [Reference Citation Analysis]
118 Mineault PJ, Tring E, Trachtenberg JT, Ringach DL. Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex. J Neurosci 2016;36:6382-92. [PMID: 27307228 DOI: 10.1523/JNEUROSCI.0430-16.2016] [Cited by in Crossref: 67] [Cited by in F6Publishing: 43] [Article Influence: 13.4] [Reference Citation Analysis]
119 Dhawale AK, Poddar R, Wolff SB, Normand VA, Kopelowitz E, Ölveczky BP. Automated long-term recording and analysis of neural activity in behaving animals. Elife 2017;6:e27702. [PMID: 28885141 DOI: 10.7554/eLife.27702] [Cited by in Crossref: 62] [Cited by in F6Publishing: 38] [Article Influence: 12.4] [Reference Citation Analysis]
120 Melis M, Greco B, Tonini R. Interplay between synaptic endocannabinoid signaling and metaplasticity in neuronal circuit function and dysfunction. Eur J Neurosci 2014;39:1189-201. [PMID: 24712998 DOI: 10.1111/ejn.12501] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
121 Lovett-Barron M, Andalman AS, Allen WE, Vesuna S, Kauvar I, Burns VM, Deisseroth K. Ancestral Circuits for the Coordinated Modulation of Brain State. Cell 2017;171:1411-1423.e17. [PMID: 29103613 DOI: 10.1016/j.cell.2017.10.021] [Cited by in Crossref: 78] [Cited by in F6Publishing: 58] [Article Influence: 15.6] [Reference Citation Analysis]
122 Kapoor V, Provost AC, Agarwal P, Murthy VN. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels. Nat Neurosci 2016;19:271-82. [PMID: 26752161 DOI: 10.1038/nn.4219] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 10.0] [Reference Citation Analysis]
123 van Kempen J, Gieselmann MA, Boyd M, Steinmetz NA, Moore T, Engel TA, Thiele A. Top-down coordination of local cortical state during selective attention. Neuron 2021;109:894-904.e8. [PMID: 33406410 DOI: 10.1016/j.neuron.2020.12.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
124 Chéreau R, Williams LE, Bawa T, Holtmaat A. Circuit mechanisms for cortical plasticity and learning. Semin Cell Dev Biol 2021:S1084-9521(21)00199-3. [PMID: 34332885 DOI: 10.1016/j.semcdb.2021.07.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
125 Medeiros DC, Lopes Aguiar C, Moraes MFD, Fisone G. Sleep Disorders in Rodent Models of Parkinson's Disease. Front Pharmacol 2019;10:1414. [PMID: 31827439 DOI: 10.3389/fphar.2019.01414] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
126 Turi GF, Wittmann G, Lechan RM, Losonczy A. Ambient GABA modulates septo-hippocampal inhibitory terminals via presynaptic GABAb receptors. Neuropharmacology 2015;88:55-62. [PMID: 25446671 DOI: 10.1016/j.neuropharm.2014.10.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
127 Shen G, Shi WX. Amphetamine Promotes Cortical Up State in Part Via Dopamine Receptors. Front Pharmacol 2021;12:728729. [PMID: 34489713 DOI: 10.3389/fphar.2021.728729] [Reference Citation Analysis]
128 Jerath R, Harden K, Crawford M, Barnes VA, Jensen M. Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep. Sleep Medicine 2014;15:279-88. [DOI: 10.1016/j.sleep.2013.10.017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
129 [DOI: 10.1101/539502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
130 Vandecasteele M, Varga V, Berényi A, Papp E, Barthó P, Venance L, Freund TF, Buzsáki G. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A 2014;111:13535-40. [PMID: 25197052 DOI: 10.1073/pnas.1411233111] [Cited by in Crossref: 174] [Cited by in F6Publishing: 158] [Article Influence: 21.8] [Reference Citation Analysis]
131 Fernández-lópez E, Alonso-calviño E, Humanes-valera D, Foffani G, Aguilar J. Slow-wave activity homeostasis in the somatosensory cortex after spinal cord injury. Experimental Neurology 2019;322:113035. [DOI: 10.1016/j.expneurol.2019.113035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
132 Tsanov M. Septo-hippocampal signal processing: breaking the code. Prog Brain Res 2015;219:103-20. [PMID: 26072236 DOI: 10.1016/bs.pbr.2015.04.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
133 de Filippo R, Rost BR, Stumpf A, Cooper C, Tukker JJ, Harms C, Beed P, Schmitz D. Somatostatin interneurons activated by 5-HT2A receptor suppress slow oscillations in medial entorhinal cortex. Elife 2021;10:e66960. [PMID: 33789079 DOI: 10.7554/eLife.66960] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
134 Sobczak F, Pais-Roldán P, Takahashi K, Yu X. Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation. Elife 2021;10:e68980. [PMID: 34463612 DOI: 10.7554/eLife.68980] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
135 Scheler G. Neuromodulation influences synchronization and intrinsic read-out. F1000Res 2018;7:1277. [PMID: 30906524 DOI: 10.12688/f1000research.15804.2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
136 Papadopoulos L, Lynn CW, Battaglia D, Bassett DS. Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Comput Biol 2020;16:e1008144. [PMID: 32886673 DOI: 10.1371/journal.pcbi.1008144] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
137 Schützler N, Girwert C, Hügli I, Mohana G, Roignant JY, Ryglewski S, Duch C. Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state. Proc Natl Acad Sci U S A 2019;116:3805-10. [PMID: 30808766 DOI: 10.1073/pnas.1813554116] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 10.3] [Reference Citation Analysis]
138 Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L. Effects of locomotion extend throughout the mouse early visual system. Curr Biol 2014;24:2899-907. [PMID: 25484299 DOI: 10.1016/j.cub.2014.10.045] [Cited by in Crossref: 128] [Cited by in F6Publishing: 99] [Article Influence: 16.0] [Reference Citation Analysis]
139 Ni J, Chen JL. Long-range cortical dynamics: a perspective from the mouse sensorimotor whisker system. Eur J Neurosci 2017;46:2315-24. [PMID: 28921729 DOI: 10.1111/ejn.13698] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
140 Kaufman M, Reinartz S, Ziv NE. Adaptation to prolonged neuromodulation in cortical cultures: an invariable return to network synchrony. BMC Biol 2014;12:83. [PMID: 25339462 DOI: 10.1186/s12915-014-0083-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
141 Breton-Provencher V, Drummond GT, Sur M. Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front Neural Circuits 2021;15:638007. [PMID: 34163331 DOI: 10.3389/fncir.2021.638007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
142 De Franceschi G, Barkat TR. Task-induced modulations of neuronal activity along the auditory pathway. Cell Rep 2021;37:110115. [PMID: 34910908 DOI: 10.1016/j.celrep.2021.110115] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Ramaswamy S, Colangelo C, Markram H. Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity. Front Neural Circuits 2018;12:77. [PMID: 30356701 DOI: 10.3389/fncir.2018.00077] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
144 Albert-Gascó H, García-Avilés Á, Moustafa S, Sánchez-Sarasua S, Gundlach AL, Olucha-Bordonau FE, Sánchez-Pérez AM. Central relaxin-3 receptor (RXFP3) activation increases ERK phosphorylation in septal cholinergic neurons and impairs spatial working memory. Brain Struct Funct 2017;222:449-63. [PMID: 27146679 DOI: 10.1007/s00429-016-1227-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
145 van Kempen J, Loughnane GM, Newman DP, Kelly SP, Thiele A, O'Connell RG, Bellgrove MA. Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal. Elife 2019;8:e42541. [PMID: 30882347 DOI: 10.7554/eLife.42541] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
146 Murata Y, Colonnese MT. Thalamic inhibitory circuits and network activity development. Brain Res 2019;1706:13-23. [PMID: 30366019 DOI: 10.1016/j.brainres.2018.10.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
147 Tendler A, Wagner S. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory. Elife 2015;4. [PMID: 25686218 DOI: 10.7554/eLife.03614] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
148 Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020;14:8. [PMID: 32508601 DOI: 10.3389/fnsys.2020.00008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
149 Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019;13:24. [PMID: 31031601 DOI: 10.3389/fncir.2019.00024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
150 Kuhn A, Brodbeck V, Tagliazucchi E, Morzelewski A, von Wegner F, Laufs H. Narcoleptic Patients Show Fragmented EEG-Microstructure During Early NREM Sleep. Brain Topogr 2015;28:619-35. [PMID: 25168255 DOI: 10.1007/s10548-014-0387-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
151 El-wajeh YA, Smith AT, Mohammed-ali RI, Hormis A, Lerner TN. Live, Die, Repeat: an error-based neurophysiological perspective on neuroplasticity and simulation-based training. British Journal of Anaesthesia 2022. [DOI: 10.1016/j.bja.2022.04.001] [Reference Citation Analysis]
152 Safaai H, Neves R, Eschenko O, Logothetis NK, Panzeri S. Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing. Proc Natl Acad Sci U S A 2015;112:12834-9. [PMID: 26417078 DOI: 10.1073/pnas.1516539112] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 6.6] [Reference Citation Analysis]
153 Boes AD, Fischer D, Geerling JC, Bruss J, Saper CB, Fox MD. Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness. Sleep 2018;41. [PMID: 29850898 DOI: 10.1093/sleep/zsy108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
154 Kobak D, Pardo-Vazquez JL, Valente M, Machens CK, Renart A. State-dependent geometry of population activity in rat auditory cortex. Elife 2019;8:e44526. [PMID: 30969167 DOI: 10.7554/eLife.44526] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
155 Jooss A, Haberbosch L, Köhn A, Rönnefarth M, Bathe-Peters R, Kozarzewski L, Fleischmann R, Scholz M, Schmidt S, Brandt SA. Motor Task-Dependent Dissociated Effects of Transcranial Random Noise Stimulation in a Finger-Tapping Task Versus a Go/No-Go Task on Corticospinal Excitability and Task Performance. Front Neurosci 2019;13:161. [PMID: 30872997 DOI: 10.3389/fnins.2019.00161] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
156 Cona F, Lacanna M, Ursino M. A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. J Comput Neurosci 2014;37:125-48. [PMID: 24402459 DOI: 10.1007/s10827-013-0493-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
157 Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019;527:3046-72. [DOI: 10.1002/cne.24729] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
158 Nieus T, D'Andrea V, Amin H, Di Marco S, Safaai H, Maccione A, Berdondini L, Panzeri S. State-dependent representation of stimulus-evoked activity in high-density recordings of neural cultures. Sci Rep 2018;8:5578. [PMID: 29615719 DOI: 10.1038/s41598-018-23853-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
159 Lőrincz ML, Adamantidis AR. Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2017;151:237-53. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
160 Sabri MM, Arabzadeh E. Information Processing Across Behavioral States: Modes of Operation and Population Dynamics in Rodent Sensory Cortex. Neuroscience 2018;368:214-28. [DOI: 10.1016/j.neuroscience.2017.09.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
161 Yadav D, Kumar P. Restoration and targeting of aberrant neurotransmitters in Parkinson's disease therapeutics. Neurochem Int 2022;156:105327. [PMID: 35331828 DOI: 10.1016/j.neuint.2022.105327] [Reference Citation Analysis]
162 Ashwin P, Coombes S, Nicks R. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience. J Math Neurosci 2016;6:2. [PMID: 26739133 DOI: 10.1186/s13408-015-0033-6] [Cited by in Crossref: 132] [Cited by in F6Publishing: 69] [Article Influence: 22.0] [Reference Citation Analysis]
163 Chen CC, Lu J, Yang R, Ding JB, Zuo Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol Psychiatry 2018;23:1614-25. [PMID: 28761082 DOI: 10.1038/mp.2017.159] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 8.0] [Reference Citation Analysis]
164 Soma S, Suematsu N, Sato AY, Tsunoda K, Bramian A, Reddy A, Takabatake K, Karube F, Fujiyama F, Shimegi S. Acetylcholine from the nucleus basalis magnocellularis facilitates the retrieval of well-established memory. Neurobiol Learn Mem 2021;183:107484. [PMID: 34175450 DOI: 10.1016/j.nlm.2021.107484] [Reference Citation Analysis]
165 Joshi S, Li Y, Kalwani RM, Gold JI. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 2016;89:221-34. [PMID: 26711118 DOI: 10.1016/j.neuron.2015.11.028] [Cited by in Crossref: 547] [Cited by in F6Publishing: 452] [Article Influence: 78.1] [Reference Citation Analysis]
166 Schneider DM, Mooney R. How Movement Modulates Hearing. Annu Rev Neurosci 2018;41:553-72. [PMID: 29986164 DOI: 10.1146/annurev-neuro-072116-031215] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
167 Jelitai M, Barth AM, Komlósi F, Freund TF, Varga V. Activity and Coupling to Hippocampal Oscillations of Median Raphe GABAergic Cells in Awake Mice. Front Neural Circuits 2021;15:784034. [PMID: 34975416 DOI: 10.3389/fncir.2021.784034] [Reference Citation Analysis]
168 Espinosa N, Alonso A, Morales C, Espinosa P, Chávez AE, Fuentealba P. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity. Cereb Cortex 2019;29:42-53. [PMID: 29161383 DOI: 10.1093/cercor/bhx302] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
169 Hoel E. The overfitted brain: Dreams evolved to assist generalization. Patterns (N Y) 2021;2:100244. [PMID: 34036289 DOI: 10.1016/j.patter.2021.100244] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
170 Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021;14:718951. [PMID: 34335183 DOI: 10.3389/fnmol.2021.718951] [Reference Citation Analysis]
171 Siju KP, Štih V, Aimon S, Gjorgjieva J, Portugues R, Grunwald Kadow IC. Valence and State-Dependent Population Coding in Dopaminergic Neurons in the Fly Mushroom Body. Curr Biol 2020;30:2104-2115.e4. [PMID: 32386530 DOI: 10.1016/j.cub.2020.04.037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
172 Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018;12:4. [PMID: 29434539 DOI: 10.3389/fncir.2018.00004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
173 Yavorska I, Wehr M. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits. Front Neural Circuits. 2016;10:76. [PMID: 27746722 DOI: 10.3389/fncir.2016.00076] [Cited by in Crossref: 89] [Cited by in F6Publishing: 79] [Article Influence: 14.8] [Reference Citation Analysis]
174 Fujiwara T, Chiappe E. Motor-Driven Modulation in Visual Neural Circuits. In: Çelik A, Wernet MF, editors. Decoding Neural Circuit Structure and Function. Cham: Springer International Publishing; 2017. pp. 261-81. [DOI: 10.1007/978-3-319-57363-2_10] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
175 Augustinaite S, Kuhn B. Complementary Ca2+ Activity of Sensory Activated and Suppressed Layer 6 Corticothalamic Neurons Reflects Behavioral State. Curr Biol 2020;30:3945-3960.e5. [PMID: 32822605 DOI: 10.1016/j.cub.2020.07.069] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
176 Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, Folk RW, Broussard GJ, Liang R, Jang MJ, Zhong H, Dombeck D, von Zastrow M, Nimmerjahn A, Gradinaru V, Williams JT, Tian L. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 2018;360:eaat4422. [PMID: 29853555 DOI: 10.1126/science.aat4422] [Cited by in Crossref: 324] [Cited by in F6Publishing: 253] [Article Influence: 81.0] [Reference Citation Analysis]
177 Timofeev I, Chauvette S. Sleep slow oscillation and plasticity. Curr Opin Neurobiol 2017;44:116-26. [PMID: 28453998 DOI: 10.1016/j.conb.2017.03.019] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
178 Kanders K, Stoop N, Stoop R. Universality in the firing of minicolumnar-type neural networks. Chaos 2019;29:093109. [PMID: 31575124 DOI: 10.1063/1.5111867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
179 Fu Y, Kaneko M, Tang Y, Alvarez-Buylla A, Stryker MP. A cortical disinhibitory circuit for enhancing adult plasticity. Elife 2015;4:e05558. [PMID: 25626167 DOI: 10.7554/eLife.05558] [Cited by in Crossref: 111] [Cited by in F6Publishing: 78] [Article Influence: 15.9] [Reference Citation Analysis]
180 de Gee JW, Tsetsos K, Schwabe L, Urai AE, McCormick D, McGinley MJ, Donner TH. Pupil-linked phasic arousal predicts a reduction of choice bias across species and decision domains. Elife 2020;9:e54014. [PMID: 32543372 DOI: 10.7554/eLife.54014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
181 Städele C, Stein W. The Site of Spontaneous Ectopic Spike Initiation Facilitates Signal Integration in a Sensory Neuron. J Neurosci 2016;36:6718-31. [PMID: 27335403 DOI: 10.1523/JNEUROSCI.2753-15.2016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
182 Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AF, Wang M. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci U S A 2013;110:12078-83. [PMID: 23818597 DOI: 10.1073/pnas.1307849110] [Cited by in Crossref: 110] [Cited by in F6Publishing: 105] [Article Influence: 12.2] [Reference Citation Analysis]
183 Takács VT, Cserép C, Schlingloff D, Pósfai B, Szőnyi A, Sos KE, Környei Z, Dénes Á, Gulyás AI, Freund TF, Nyiri G. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat Commun 2018;9:2848. [PMID: 30030438 DOI: 10.1038/s41467-018-05136-1] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
184 Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Prog Brain Res 2013;207:65-90. [PMID: 24309251 DOI: 10.1016/B978-0-444-63327-9.00003-5] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 6.9] [Reference Citation Analysis]
185 Bojarskaite L, Bjørnstad DM, Pettersen KH, Cunen C, Hermansen GH, Åbjørsbråten KS, Chambers AR, Sprengel R, Vervaeke K, Tang W, Enger R, Nagelhus EA. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun 2020;11:3240. [PMID: 32632168 DOI: 10.1038/s41467-020-17062-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 16.0] [Reference Citation Analysis]
186 Petzold A, Valencia M, Pál B, Mena-Segovia J. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 2015;9:68. [PMID: 26582977 DOI: 10.3389/fncir.2015.00068] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
187 Jang HJ, Cho KH, Joo K, Kim MJ, Rhie DJ. Differential modulation of phasic and tonic inhibition underlies serotonergic suppression of long-term potentiation in the rat visual cortex. Neuroscience 2015;301:351-62. [PMID: 26086544 DOI: 10.1016/j.neuroscience.2015.06.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
188 Haupt M, Jödecke S, Srowig A, Napiórkowski N, Preul C, Witte OW, Finke K. Phasic alerting increases visual processing speed in amnestic mild cognitive impairment. Neurobiol Aging 2021;102:23-31. [PMID: 33765429 DOI: 10.1016/j.neurobiolaging.2021.01.031] [Reference Citation Analysis]
189 Poskanzer KE, Yuste R. Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci U S A 2016;113:E2675-84. [PMID: 27122314 DOI: 10.1073/pnas.1520759113] [Cited by in Crossref: 170] [Cited by in F6Publishing: 155] [Article Influence: 28.3] [Reference Citation Analysis]
190 Schredelseker T, Veit F, Dorsky RI, Driever W. Bsx Is Essential for Differentiation of Multiple Neuromodulatory Cell Populations in the Secondary Prosencephalon. Front Neurosci 2020;14:525. [PMID: 32581684 DOI: 10.3389/fnins.2020.00525] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
191 Pillay S, Liu X, Baracskay P, Hudetz AG. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats. Brain Connect 2014;4:523-34. [PMID: 25090190 DOI: 10.1089/brain.2014.0254] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
192 Petersen C, Crochet S. Synaptic Computation and Sensory Processing in Neocortical Layer 2/3. Neuron 2013;78:28-48. [DOI: 10.1016/j.neuron.2013.03.020] [Cited by in Crossref: 153] [Cited by in F6Publishing: 135] [Article Influence: 17.0] [Reference Citation Analysis]
193 Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O. The Locus Coeruleus Is a Complex and Differentiated Neuromodulatory System. Neuron 2018;99:1055-1068.e6. [PMID: 30122373 DOI: 10.1016/j.neuron.2018.07.037] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
194 Hotta H, Suzuki H, Inoue T, Stewart M. Involvement of the basal nucleus of Meynert on regional cerebral cortical vasodilation associated with masticatory muscle activity in rats. J Cereb Blood Flow Metab 2020;40:2416-28. [PMID: 31847668 DOI: 10.1177/0271678X19895244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
195 Wandell BA, Winawer J. Computational neuroimaging and population receptive fields. Trends Cogn Sci 2015;19:349-57. [PMID: 25850730 DOI: 10.1016/j.tics.2015.03.009] [Cited by in Crossref: 118] [Cited by in F6Publishing: 73] [Article Influence: 16.9] [Reference Citation Analysis]
196 Thomson E, Lou J, Sylvester K, McDonough A, Tica S, Nicolelis MA. Basal forebrain dynamics during a tactile discrimination task. J Neurophysiol 2014;112:1179-91. [PMID: 24920019 DOI: 10.1152/jn.00040.2014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
197 Sachidhanandam S, Sreenivasan V, Kyriakatos A, Kremer Y, Petersen CCH. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat Neurosci 2013;16:1671-7. [DOI: 10.1038/nn.3532] [Cited by in Crossref: 219] [Cited by in F6Publishing: 186] [Article Influence: 24.3] [Reference Citation Analysis]
198 Nunez-Parra A, Maurer RK, Krahe K, Smith RS, Araneda RC. Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proc Natl Acad Sci U S A 2013;110:14777-82. [PMID: 23959889 DOI: 10.1073/pnas.1310686110] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 6.6] [Reference Citation Analysis]
199 Edlow BL, Sanz LRD, Polizzotto L, Pouratian N, Rolston JD, Snider SB, Thibaut A, Stevens RD, Gosseries O; Curing Coma Campaign and its contributing members. Therapies to Restore Consciousness in Patients with Severe Brain Injuries: A Gap Analysis and Future Directions. Neurocrit Care 2021;35:68-85. [PMID: 34236624 DOI: 10.1007/s12028-021-01227-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
200 Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VA, Donner TH. Top-down modulation in human visual cortex predicts the stability of a perceptual illusion. J Neurophysiol 2015;113:1063-76. [PMID: 25411458 DOI: 10.1152/jn.00338.2014] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
201 Engel TA, Steinmetz NA, Gieselmann MA, Thiele A, Moore T, Boahen K. Selective modulation of cortical state during spatial attention. Science 2016;354:1140-4. [PMID: 27934763 DOI: 10.1126/science.aag1420] [Cited by in Crossref: 100] [Cited by in F6Publishing: 66] [Article Influence: 20.0] [Reference Citation Analysis]
202 O'Callaghan C, Walpola IC, Shine JM. Neuromodulation of the mind-wandering brain state: the interaction between neuromodulatory tone, sharp wave-ripples and spontaneous thought. Philos Trans R Soc Lond B Biol Sci 2021;376:20190699. [PMID: 33308063 DOI: 10.1098/rstb.2019.0699] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
203 Deurveilher S, Ryan N, Burns J, Semba K. Social and environmental contexts modulate sleep deprivation-induced c-Fos activation in rats. Behav Brain Res 2013;256:238-49. [PMID: 23973763 DOI: 10.1016/j.bbr.2013.08.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
204 McBurney-Lin J, Sun Y, Tortorelli LS, Nguyen QAT, Haga-Yamanaka S, Yang H. Bidirectional pharmacological perturbations of the noradrenergic system differentially affect tactile detection. Neuropharmacology 2020;174:108151. [PMID: 32445638 DOI: 10.1016/j.neuropharm.2020.108151] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
205 Reuveni I, Barkai E. Tune it in: mechanisms and computational significance of neuron-autonomous plasticity. Journal of Neurophysiology 2018;120:1781-95. [DOI: 10.1152/jn.00102.2018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
206 Brascamp JW, de Hollander G, Wertheimer MD, DePew AN, Knapen T. Separable pupillary signatures of perception and action during perceptual multistability. Elife 2021;10:e66161. [PMID: 34378532 DOI: 10.7554/eLife.66161] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
207 Tang Y, Posner MI. Training brain networks and states. Trends in Cognitive Sciences 2014;18:345-50. [DOI: 10.1016/j.tics.2014.04.002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
208 Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019;29:980-1022. [PMID: 31301166 DOI: 10.1002/hipo.23139] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 7.7] [Reference Citation Analysis]
209 Zhang CL, Koukouli F, Allegra M, Ortiz C, Kao HL, Maskos U, Changeux JP, Schmidt-Hieber C. Inhibitory control of synaptic signals preceding locomotion in mouse frontal cortex. Cell Rep 2021;37:110035. [PMID: 34818555 DOI: 10.1016/j.celrep.2021.110035] [Reference Citation Analysis]
210 Pacholko AG, Wotton CA, Bekar LK. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front Cell Neurosci 2020;14:581075. [PMID: 33192327 DOI: 10.3389/fncel.2020.581075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
211 Aton SJ. Set and setting: how behavioral state regulates sensory function and plasticity. Neurobiol Learn Mem 2013;106:1-10. [PMID: 23792020 DOI: 10.1016/j.nlm.2013.06.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
212 Shine JM. Neuromodulatory Influences on Integration and Segregation in the Brain. Trends Cogn Sci 2019;23:572-83. [PMID: 31076192 DOI: 10.1016/j.tics.2019.04.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
213 [DOI: 10.1101/2020.03.26.009365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
214 Wahis J, Holt MG. Astrocytes, Noradrenaline, α1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front Cell Neurosci 2021;15:645691. [PMID: 33716677 DOI: 10.3389/fncel.2021.645691] [Reference Citation Analysis]
215 Mikhrina AL, Saveleva LO, Morina IY, Romanova IV. The Role of the AgRP 25-51 Active Fragment in the Regulation of Functional Activity of Locus Coeruleus Norepinephrinergic Neurons and in Norepinephrine Biosynthesis. J Evol Biochem Phys 2021;57:1490-8. [DOI: 10.1134/s0022093021060259] [Reference Citation Analysis]
216 Kimura R, Safari MS, Mirnajafi-Zadeh J, Kimura R, Ebina T, Yanagawa Y, Sohya K, Tsumoto T. Curtailing effect of awakening on visual responses of cortical neurons by cholinergic activation of inhibitory circuits. J Neurosci 2014;34:10122-33. [PMID: 25057213 DOI: 10.1523/JNEUROSCI.0863-14.2014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
217 Kovács A, Pál B. Astrocyte-Dependent Slow Inward Currents (SICs) Participate in Neuromodulatory Mechanisms in the Pedunculopontine Nucleus (PPN). Front Cell Neurosci 2017;11:16. [PMID: 28203147 DOI: 10.3389/fncel.2017.00016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
218 Urai AE, Braun A, Donner TH. Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat Commun 2017;8:14637. [PMID: 28256514 DOI: 10.1038/ncomms14637] [Cited by in Crossref: 148] [Cited by in F6Publishing: 96] [Article Influence: 29.6] [Reference Citation Analysis]
219 Ji N, Madan GK, Fabre GI, Dayan A, Baker CM, Kramer TS, Nwabudike I, Flavell SW. A neural circuit for flexible control of persistent behavioral states. Elife 2021;10:e62889. [PMID: 34792019 DOI: 10.7554/eLife.62889] [Reference Citation Analysis]
220 Crunelli V, David F, Lőrincz ML, Hughes SW. The thalamocortical network as a single slow wave-generating unit. Current Opinion in Neurobiology 2015;31:72-80. [DOI: 10.1016/j.conb.2014.09.001] [Cited by in Crossref: 98] [Cited by in F6Publishing: 85] [Article Influence: 14.0] [Reference Citation Analysis]
221 Patriarchi T, Cho JR, Merten K, Marley A, Broussard GJ, Liang R, Williams J, Nimmerjahn A, von Zastrow M, Gradinaru V, Tian L. Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators. Nat Protoc 2019;14:3471-505. [PMID: 31732722 DOI: 10.1038/s41596-019-0239-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
222 Oh B, Wu YW, Swaminathan V, Lam V, Ding J, George PM. Modulating the Electrical and Mechanical Microenvironment to Guide Neuronal Stem Cell Differentiation. Adv Sci (Weinh) 2021;8:2002112. [PMID: 33854874 DOI: 10.1002/advs.202002112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
223 Gelbard-Sagiv H, Magidov E, Sharon H, Hendler T, Nir Y. Noradrenaline Modulates Visual Perception and Late Visually Evoked Activity. Curr Biol 2018;28:2239-2249.e6. [PMID: 29983318 DOI: 10.1016/j.cub.2018.05.051] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
224 Li M, Han Y, Aburn MJ, Breakspear M, Poldrack RA, Shine JM, Lizier JT. Transitions in information processing dynamics at the whole-brain network level are driven by alterations in neural gain. PLoS Comput Biol 2019;15:e1006957. [PMID: 31613882 DOI: 10.1371/journal.pcbi.1006957] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
225 Ramesh D, Brockmann A. Mass Spectrometric Quantification of Arousal Associated Neurochemical Changes in Single Honey Bee Brains and Brain Regions. ACS Chem Neurosci 2019;10:1950-9. [DOI: 10.1021/acschemneuro.8b00254] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
226 Maloney RT. Neuromodulation and Individuality. Front Behav Neurosci 2021;15:777873. [PMID: 34899204 DOI: 10.3389/fnbeh.2021.777873] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
227 Masneuf S, Imbach LL, Büchele F, Colacicco G, Penner M, Moreira CG, Ineichen C, Jahanshahi A, Temel Y, Baumann CR, Noain D. Altered sleep intensity upon DBS to hypothalamic sleep-wake centers in rats. Transl Neurosci 2021;12:611-25. [PMID: 35070444 DOI: 10.1515/tnsci-2020-0202] [Reference Citation Analysis]
228 Salkoff DB, Zagha E, McCarthy E, McCormick DA. Movement and Performance Explain Widespread Cortical Activity in a Visual Detection Task. Cereb Cortex 2020;30:421-37. [PMID: 31711133 DOI: 10.1093/cercor/bhz206] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 35.0] [Reference Citation Analysis]
229 Castro-Alamancos MA, Gulati T. Neuromodulators produce distinct activated states in neocortex. J Neurosci 2014;34:12353-67. [PMID: 25209276 DOI: 10.1523/JNEUROSCI.1858-14.2014] [Cited by in Crossref: 40] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
230 Kim M, Kim H, Huang Z, Mashour GA, Jordan D, Ilg R, Lee U. Criticality Creates a Functional Platform for Network Transitions Between Internal and External Processing Modes in the Human Brain. Front Syst Neurosci 2021;15:657809. [PMID: 34899199 DOI: 10.3389/fnsys.2021.657809] [Reference Citation Analysis]
231 Ji N, Venkatachalam V, Rodgers HD, Hung W, Kawano T, Clark CM, Lim M, Alkema MJ, Zhen M, Samuel AD. Corollary discharge promotes a sustained motor state in a neural circuit for navigation. Elife 2021;10:e68848. [PMID: 33880993 DOI: 10.7554/eLife.68848] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
232 Oliva A. Parallel Pathways for Mnemonic Processing. Trends Neurosci 2021;44:79-81. [PMID: 33256999 DOI: 10.1016/j.tins.2020.11.002] [Reference Citation Analysis]
233 Matsumoto S, Ohyama K, Díaz J, Yanagisawa M, Greene RW, Vogt KE. Enhanced cortical responsiveness during natural sleep in freely behaving mice. Sci Rep 2020;10:2278. [PMID: 32042079 DOI: 10.1038/s41598-020-59151-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
234 Kanashiro T, Ocker GK, Cohen MR, Doiron B. Attentional modulation of neuronal variability in circuit models of cortex. Elife 2017;6:e23978. [PMID: 28590902 DOI: 10.7554/eLife.23978] [Cited by in Crossref: 38] [Cited by in F6Publishing: 20] [Article Influence: 7.6] [Reference Citation Analysis]
235 Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann CS. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin Neurophysiol 2017;128:843-57. [PMID: 28233641 DOI: 10.1016/j.clinph.2017.01.003] [Cited by in Crossref: 123] [Cited by in F6Publishing: 101] [Article Influence: 24.6] [Reference Citation Analysis]
236 Chen C, Itakura E, Nelson GM, Sheng M, Laurent P, Fenk LA, Butcher RA, Hegde RS, de Bono M. IL-17 is a neuromodulator of Caenorhabditis elegans sensory responses. Nature 2017;542:43-8. [PMID: 28099418 DOI: 10.1038/nature20818] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 11.6] [Reference Citation Analysis]
237 King DR, de Chastelaine M, Elward RL, Wang TH, Rugg MD. Recollection-related increases in functional connectivity predict individual differences in memory accuracy. J Neurosci 2015;35:1763-72. [PMID: 25632149 DOI: 10.1523/JNEUROSCI.3219-14.2015] [Cited by in Crossref: 96] [Cited by in F6Publishing: 49] [Article Influence: 13.7] [Reference Citation Analysis]
238 Dannenberg H, Kelley C, Hoyland A, Monaghan CK, Hasselmo ME. The Firing Rate Speed Code of Entorhinal Speed Cells Differs across Behaviorally Relevant Time Scales and Does Not Depend on Medial Septum Inputs. J Neurosci 2019;39:3434-53. [PMID: 30804092 DOI: 10.1523/JNEUROSCI.1450-18.2019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
239 Goyer D, Kurth S, Gillet C, Keine C, Rübsamen R, Kuenzel T. Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons. eNeuro 2016;3:ENEURO. [PMID: 27699207 DOI: 10.1523/ENEURO.0186-16.2016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
240 Szabo GG, Farrell JS, Dudok B, Hou WH, Ortiz AL, Varga C, Moolchand P, Gulsever CI, Gschwind T, Dimidschstein J, Capogna M, Soltesz I. Ripple-selective GABAergic projection cells in the hippocampus. Neuron 2022:S0896-6273(22)00310-5. [PMID: 35489331 DOI: 10.1016/j.neuron.2022.04.002] [Reference Citation Analysis]
241 Kim JH, Jung AH, Jeong D, Choi I, Kim K, Shin S, Kim SJ, Lee SH. Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary Sensory Cortices. J Neurosci 2016;36:5314-27. [PMID: 27170128 DOI: 10.1523/JNEUROSCI.4333-15.2016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
242 Wang XD, Chen C, Zhang D, Yao H. Cumulative latency advance underlies fast visual processing in desynchronized brain state. Proc Natl Acad Sci U S A 2014;111:515-20. [PMID: 24347634 DOI: 10.1073/pnas.1316166111] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
243 Foik AT, Ghazaryan A, Waleszczyk WJ. Oscillations in Spontaneous and Visually Evoked Neuronal Activity in the Superficial Layers of the Cat's Superior Colliculus. Front Syst Neurosci 2018;12:60. [PMID: 30559653 DOI: 10.3389/fnsys.2018.00060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
244 Ranjbar-Slamloo Y, Fazlali Z. Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front Mol Neurosci 2019;12:334. [PMID: 32038164 DOI: 10.3389/fnmol.2019.00334] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
245 Eggermann E, Kremer Y, Crochet S, Petersen CCH. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep 2014;9:1654-60. [PMID: 25482555 DOI: 10.1016/j.celrep.2014.11.005] [Cited by in Crossref: 114] [Cited by in F6Publishing: 104] [Article Influence: 14.3] [Reference Citation Analysis]
246 Matsumura K, Sasaki K, Miyatake T. Responses to artificial selection for locomotor activity: A focus on death feigning in red flour beetle. J Evol Biol 2022. [PMID: 35506566 DOI: 10.1111/jeb.14012] [Reference Citation Analysis]
247 DiNuzzo M, Walls AB, Öz G, Seaquist ER, Waagepetersen HS, Bak LK, Nedergaard M, Schousboe A. State-Dependent Changes in Brain Glycogen Metabolism. Adv Neurobiol 2019;23:269-309. [PMID: 31667812 DOI: 10.1007/978-3-030-27480-1_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
248 Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021;15:643597. [PMID: 34025339 DOI: 10.3389/fnins.2021.643597] [Reference Citation Analysis]
249 Kim K, Müller MLTM, Bohnen NI, Sarter M, Lustig C. Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: Evidence from Parkinson's disease patients with defined cholinergic losses. Neuroimage 2017;149:295-304. [PMID: 28167350 DOI: 10.1016/j.neuroimage.2017.02.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
250 Seol M, Kuner T. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse. Eur J Neurosci 2015;42:3033-44. [PMID: 26390982 DOI: 10.1111/ejn.13084] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
251 Larsen RS, Waters J. Neuromodulatory Correlates of Pupil Dilation. Front Neural Circuits 2018;12:21. [PMID: 29593504 DOI: 10.3389/fncir.2018.00021] [Cited by in Crossref: 84] [Cited by in F6Publishing: 59] [Article Influence: 21.0] [Reference Citation Analysis]
252 Sanchez-Vives MV, Massimini M, Mattia M. Shaping the Default Activity Pattern of the Cortical Network. Neuron 2017;94:993-1001. [PMID: 28595056 DOI: 10.1016/j.neuron.2017.05.015] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 15.0] [Reference Citation Analysis]
253 Stoelzel CR, Bereshpolova Y, Alonso JM, Swadlow HA. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication. J Neurosci 2017;37:6342-58. [PMID: 28559382 DOI: 10.1523/JNEUROSCI.0444-17.2017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
254 Vaidyanathan TV, Collard M, Yokoyama S, Reitman ME, Poskanzer KE. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. Elife 2021;10:e63329. [PMID: 33729913 DOI: 10.7554/eLife.63329] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
255 Doiron B, Litwin-Kumar A, Rosenbaum R, Ocker GK, Josić K. The mechanics of state-dependent neural correlations. Nat Neurosci 2016;19:383-93. [PMID: 26906505 DOI: 10.1038/nn.4242] [Cited by in Crossref: 145] [Cited by in F6Publishing: 98] [Article Influence: 24.2] [Reference Citation Analysis]
256 Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Interstitial ions: A key regulator of state-dependent neural activity? Prog Neurobiol 2020;193:101802. [PMID: 32413398 DOI: 10.1016/j.pneurobio.2020.101802] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
257 Sarter M, Lustig C, Howe WM, Gritton H, Berry AS. Deterministic functions of cortical acetylcholine. Eur J Neurosci 2014;39:1912-20. [PMID: 24593677 DOI: 10.1111/ejn.12515] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 8.4] [Reference Citation Analysis]
258 Wang J, Hosseini E, Meirhaeghe N, Akkad A, Jazayeri M. Reinforcement regulates timing variability in thalamus. Elife 2020;9:e55872. [PMID: 33258769 DOI: 10.7554/eLife.55872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
259 Schriver BJ, Bagdasarov S, Wang Q. Pupil-linked arousal modulates behavior in rats performing a whisker deflection direction discrimination task. J Neurophysiol 2018;120:1655-70. [PMID: 29995602 DOI: 10.1152/jn.00290.2018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
260 Skilling QM, Eniwaye B, Clawson BC, Shaver J, Ognjanovski N, Aton SJ, Zochowski M. Acetylcholine-gated current translates wake neuronal firing rate information into a spike timing-based code in Non-REM sleep, stabilizing neural network dynamics during memory consolidation. PLoS Comput Biol 2021;17:e1009424. [PMID: 34543284 DOI: 10.1371/journal.pcbi.1009424] [Reference Citation Analysis]
261 Lee CCY, Kheradpezhouh E, Diamond ME, Arabzadeh E. State-Dependent Changes in Perception and Coding in the Mouse Somatosensory Cortex. Cell Rep 2020;32:108197. [PMID: 32997984 DOI: 10.1016/j.celrep.2020.108197] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
262 Sayin S, Boehm AC, Kobler JM, De Backer JF, Grunwald Kadow IC. Internal State Dependent Odor Processing and Perception-The Role of Neuromodulation in the Fly Olfactory System. Front Cell Neurosci 2018;12:11. [PMID: 29440990 DOI: 10.3389/fncel.2018.00011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
263 Antle MC. Sleep: Neural Systems. International Encyclopedia of the Social & Behavioral Sciences. Elsevier; 2015. pp. 87-93. [DOI: 10.1016/b978-0-08-097086-8.55049-1] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
264 Beierlein M. Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons. J Physiol 2014;592:4137-45. [PMID: 24973413 DOI: 10.1113/jphysiol.2014.277376] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
265 De Cicco V, Tramonti Fantozzi MP, Cataldo E, Barresi M, Bruschini L, Faraguna U, Manzoni D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front Neuroanat 2017;11:130. [PMID: 29358907 DOI: 10.3389/fnana.2017.00130] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
266 Case L, Lyons DJ, Broberger C. Desynchronization of the Rat Cortical Network and Excitation of White Matter Neurons by Neurotensin. Cereb Cortex 2017;27:2671-85. [PMID: 27095826 DOI: 10.1093/cercor/bhw100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
267 Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S. The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state. J Neural Transm (Vienna) 2016;123:667-78. [PMID: 27216823 DOI: 10.1007/s00702-016-1577-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
268 Abbott SBG, Souza GMPR. Chemoreceptor mechanisms regulating CO2 -induced arousal from sleep. J Physiol 2021;599:2559-71. [PMID: 33759184 DOI: 10.1113/JP281305] [Reference Citation Analysis]
269 Burkhanova G, Chernova K, Khazipov R, Sheroziya M. Effects of Cortical Cooling on Activity Across Layers of the Rat Barrel Cortex. Front Syst Neurosci 2020;14:52. [PMID: 32848644 DOI: 10.3389/fnsys.2020.00052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
270 Chou KF, Sen K. AIM: A network model of attention in auditory cortex. PLoS Comput Biol 2021;17:e1009356. [PMID: 34449761 DOI: 10.1371/journal.pcbi.1009356] [Reference Citation Analysis]
271 Lin PA, Asinof SK, Edwards NJ, Isaacson JS. Arousal regulates frequency tuning in primary auditory cortex. Proc Natl Acad Sci U S A 2019;116:25304-10. [PMID: 31757852 DOI: 10.1073/pnas.1911383116] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
272 Wirtshafter HS, Wilson MA. Lateral septum as a nexus for mood, motivation, and movement. Neurosci Biobehav Rev 2021;126:544-59. [PMID: 33848512 DOI: 10.1016/j.neubiorev.2021.03.029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
273 Robson DN, Li JM. A dynamical systems view of neuroethology: Uncovering stateful computation in natural behaviors. Curr Opin Neurobiol 2022;73:102517. [PMID: 35217311 DOI: 10.1016/j.conb.2022.01.002] [Reference Citation Analysis]
274 Jaffe PI, Brainard MS. Acetylcholine acts on songbird premotor circuitry to invigorate vocal output. Elife 2020;9:e53288. [PMID: 32425158 DOI: 10.7554/eLife.53288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
275 Zagha E, Casale AE, Sachdev RN, McGinley MJ, McCormick DA. Motor cortex feedback influences sensory processing by modulating network state. Neuron 2013;79:567-78. [PMID: 23850595 DOI: 10.1016/j.neuron.2013.06.008] [Cited by in Crossref: 165] [Cited by in F6Publishing: 148] [Article Influence: 18.3] [Reference Citation Analysis]
276 Scheyltjens I, Arckens L. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plast 2016;2016:8723623. [PMID: 27403348 DOI: 10.1155/2016/8723623] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
277 Lee S, Park J, Smirnakis SM. Internal Gain Modulations, But Not Changes in Stimulus Contrast, Preserve the Neural Code. J Neurosci 2019;39:1671-87. [PMID: 30647148 DOI: 10.1523/JNEUROSCI.2012-18.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
278 Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 2016;19:290-8. [PMID: 26691833 DOI: 10.1038/nn.4209] [Cited by in Crossref: 140] [Cited by in F6Publishing: 126] [Article Influence: 20.0] [Reference Citation Analysis]
279 Yanagihara S, Yazaki-Sugiyama Y. Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning. Nat Commun 2016;7:11946. [PMID: 27327620 DOI: 10.1038/ncomms11946] [Cited by in Crossref: 74] [Cited by in F6Publishing: 57] [Article Influence: 12.3] [Reference Citation Analysis]
280 Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2018;97:769-85. [PMID: 29470969 DOI: 10.1016/j.neuron.2018.01.008] [Cited by in Crossref: 127] [Cited by in F6Publishing: 84] [Article Influence: 42.3] [Reference Citation Analysis]
281 Gasselin C, Hohl B, Vernet A, Crochet S, Petersen CCH. Cell-type-specific nicotinic input disinhibits mouse barrel cortex during active sensing. Neuron 2021;109:778-787.e3. [PMID: 33472037 DOI: 10.1016/j.neuron.2020.12.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
282 Kjaerby C, Rasmussen R, Andersen M, Nedergaard M. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function? Neurochem Res 2017;42:1810-22. [PMID: 28210958 DOI: 10.1007/s11064-017-2195-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
283 Srikanth S, Narayanan R. Variability in State-Dependent Plasticity of Intrinsic Properties during Cell-Autonomous Self-Regulation of Calcium Homeostasis in Hippocampal Model Neurons. eNeuro 2015;2:ENEURO. [PMID: 26464994 DOI: 10.1523/ENEURO.0053-15.2015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
284 Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017;96:17-42. [PMID: 28957666 DOI: 10.1016/j.neuron.2017.07.030] [Cited by in Crossref: 661] [Cited by in F6Publishing: 597] [Article Influence: 132.2] [Reference Citation Analysis]
285 De Luna P, Veit J, Rainer G. Basal forebrain activation enhances between-trial reliability of low-frequency local field potentials (LFP) and spiking activity in tree shrew primary visual cortex (V1). Brain Struct Funct 2017;222:4239-52. [PMID: 28660418 DOI: 10.1007/s00429-017-1468-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
286 Negahbani E, Schmidt SL, Mishal N, Fröhlich F. Neuromodulation-dependent effect of gated high-frequency, LFMS-like electric field stimulation in mouse cortical slices. Eur J Neurosci 2019;49:1288-97. [PMID: 30450622 DOI: 10.1111/ejn.14273] [Reference Citation Analysis]
287 Bergmann TO. Brain State-Dependent Brain Stimulation. Front Psychol 2018;9:2108. [PMID: 30443236 DOI: 10.3389/fpsyg.2018.02108] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
288 Poli D, Wheeler BC, DeMarse TB, Brewer GJ. Pattern separation and completion of distinct axonal inputs transmitted via micro-tunnels between co-cultured hippocampal dentate, CA3, CA1 and entorhinal cortex networks. J Neural Eng 2018;15:046009. [PMID: 29623900 DOI: 10.1088/1741-2552/aabc20] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
289 Kay K, Frank LM. Three brain states in the hippocampus and cortex. Hippocampus 2019;29:184-238. [PMID: 29722465 DOI: 10.1002/hipo.22956] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
290 Kastanenka KV, Moreno-Bote R, De Pittà M, Perea G, Eraso-Pichot A, Masgrau R, Poskanzer KE, Galea E. A roadmap to integrate astrocytes into Systems Neuroscience. Glia 2020;68:5-26. [PMID: 31058383 DOI: 10.1002/glia.23632] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
291 Pujol J, Blanco-Hinojo L, Gallart L, Moltó L, Martínez-Vilavella G, Vilà E, Pacreu S, Adalid I, Deus J, Pérez-Sola V, Fernández-Candil J. Largest scale dissociation of brain activity at propofol-induced loss of consciousness. Sleep 2021;44:zsaa152. [PMID: 32813022 DOI: 10.1093/sleep/zsaa152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
292 Marumo C, Nakano T. Early phase of pupil dilation is mediated by the peripheral parasympathetic pathway. J Neurophysiol 2021;126:2130-7. [PMID: 34851753 DOI: 10.1152/jn.00401.2021] [Reference Citation Analysis]
293 Fisher SP, Cui N, McKillop LE, Gemignani J, Bannerman DM, Oliver PL, Peirson SN, Vyazovskiy VV. Stereotypic wheel running decreases cortical activity in mice. Nat Commun 2016;7:13138. [PMID: 27748455 DOI: 10.1038/ncomms13138] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
294 de Gee JW, Colizoli O, Kloosterman NA, Knapen T, Nieuwenhuis S, Donner TH. Dynamic modulation of decision biases by brainstem arousal systems. Elife 2017;6:e23232. [PMID: 28383284 DOI: 10.7554/eLife.23232] [Cited by in Crossref: 124] [Cited by in F6Publishing: 67] [Article Influence: 24.8] [Reference Citation Analysis]
295 Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021:S0306-4522(21)00450-4. [PMID: 34506834 DOI: 10.1016/j.neuroscience.2021.08.035] [Reference Citation Analysis]
296 Schreck MR, Zhuang L, Janke E, Moberly AH, Bhattarai JP, Gottfried JA, Wesson DW, Ma M. State-dependent olfactory processing in freely behaving mice. Cell Rep 2022;38:110450. [PMID: 35235805 DOI: 10.1016/j.celrep.2022.110450] [Reference Citation Analysis]
297 Pais-Roldán P, Takahashi K, Sobczak F, Chen Y, Zhao X, Zeng H, Jiang Y, Yu X. Indexing brain state-dependent pupil dynamics with simultaneous fMRI and optical fiber calcium recording. Proc Natl Acad Sci U S A 2020;117:6875-82. [PMID: 32139609 DOI: 10.1073/pnas.1909937117] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]