BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Banghart MR, Sabatini BL. Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 2012;73:249-59. [PMID: 22284180 DOI: 10.1016/j.neuron.2011.11.016] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Jeong JW, McCall JG, Shin G, Zhang Y, Al-Hasani R, Kim M, Li S, Sim JY, Jang KI, Shi Y. Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics. Cell. 2015;162:662-674. [PMID: 26189679 DOI: 10.1016/j.cell.2015.06.058] [Cited by in Crossref: 291] [Cited by in F6Publishing: 216] [Article Influence: 41.6] [Reference Citation Analysis]
2 Kumar P, Shukhman D, Laughlin ST. A photocaged, cyclopropene-containing analog of the amino acid neurotransmitter glutamate. Tetrahedron Lett 2016;57:5750-2. [PMID: 30245532 DOI: 10.1016/j.tetlet.2016.10.106] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
3 Elleman AV, Devienne G, Makinson CD, Haynes AL, Huguenard JR, Du Bois J. Precise spatiotemporal control of voltage-gated sodium channels by photocaged saxitoxin. Nat Commun 2021;12:4171. [PMID: 34234116 DOI: 10.1038/s41467-021-24392-2] [Reference Citation Analysis]
4 Hussain ZM, Fitting S, Watanabe H, Usynin I, Yakovleva T, Knapp PE, Scheff SW, Hauser KF, Bakalkin G. Lateralized response of dynorphin a peptide levels after traumatic brain injury. J Neurotrauma 2012;29:1785-93. [PMID: 22468884 DOI: 10.1089/neu.2011.2286] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
5 Siuda ER, Copits BA, Schmidt MJ, Baird MA, Al-Hasani R, Planer WJ, Funderburk SC, McCall JG, Gereau RW 4th, Bruchas MR. Spatiotemporal control of opioid signaling and behavior. Neuron 2015;86:923-35. [PMID: 25937173 DOI: 10.1016/j.neuron.2015.03.066] [Cited by in Crossref: 89] [Cited by in F6Publishing: 79] [Article Influence: 12.7] [Reference Citation Analysis]
6 Williams JT. Desensitization of functional µ-opioid receptors increases agonist off-rate. Mol Pharmacol 2014;86:52-61. [PMID: 24748657 DOI: 10.1124/mol.114.092098] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
7 Soleiman MT. Opioid Inhibition of Intercalated Input to the Central Amygdala. J Neurosci 2015;35:13272-4. [PMID: 26424876 DOI: 10.1523/JNEUROSCI.2578-15.2015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
8 Spangler SM, Bruchas MR. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 2017;32:56-70. [PMID: 27875804 DOI: 10.1016/j.coph.2016.11.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 52] [Article Influence: 10.2] [Reference Citation Analysis]
9 Vázquez-Guardado A, Yang Y, Bandodkar AJ, Rogers JA. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020;23:1522-36. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
10 Choi C, Nitabach MN. Membrane-tethered ligands: tools for cell-autonomous pharmacological manipulation of biological circuits. Physiology (Bethesda) 2013;28:164-71. [PMID: 23636262 DOI: 10.1152/physiol.00056.2012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
11 Ricart-ortega M, Font J, Llebaria A. GPCR photopharmacology. Molecular and Cellular Endocrinology 2019;488:36-51. [DOI: 10.1016/j.mce.2019.03.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
12 Massaly N, Copits BA, Wilson-Poe AR, Hipólito L, Markovic T, Yoon HJ, Liu S, Walicki MC, Bhatti DL, Sirohi S, Klaas A, Walker BM, Neve R, Cahill CM, Shoghi KI, Gereau RW 4th, McCall JG, Al-Hasani R, Bruchas MR, Morón JA. Pain-Induced Negative Affect Is Mediated via Recruitment of The Nucleus Accumbens Kappa Opioid System. Neuron 2019;102:564-573.e6. [PMID: 30878290 DOI: 10.1016/j.neuron.2019.02.029] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 20.3] [Reference Citation Analysis]
13 Abreu N, Levitz J. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods Mol Biol 2020;2173:21-51. [PMID: 32651908 DOI: 10.1007/978-1-0716-0755-8_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, Xue Y, Ausra J, Wang X, Li R, Wu G, Vázquez-Guardado A, Xie Y, Xie Z, Ostojich D, Peng D, Sun R, Wang B, Yu Y, Leshock JP, Qu S, Su CJ, Shen W, Hang T, Banks A, Huang Y, Radulovic J, Gutruf P, Bruchas MR, Rogers JA. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci U S A 2019;116:21427-37. [PMID: 31601737 DOI: 10.1073/pnas.1909850116] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 14.3] [Reference Citation Analysis]
15 Jullié D, Valbret Z, Stoeber M. Optical tools to study the subcellular organization of GPCR neuromodulation. J Neurosci Methods 2021;366:109408. [PMID: 34763022 DOI: 10.1016/j.jneumeth.2021.109408] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 French AR, van Rijn RM. An updated assessment of the translational promise of G-protein-biased kappa opioid receptor agonists to treat pain and other indications without debilitating adverse effects. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106091] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Banghart MR, He XJ, Sabatini BL. A Caged Enkephalin Optimized for Simultaneously Probing Mu and Delta Opioid Receptors. ACS Chem Neurosci 2018;9:684-90. [PMID: 29266926 DOI: 10.1021/acschemneuro.7b00485] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
18 Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O. Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron 2017;95:504-29. [PMID: 28772120 DOI: 10.1016/j.neuron.2017.06.050] [Cited by in Crossref: 129] [Cited by in F6Publishing: 111] [Article Influence: 25.8] [Reference Citation Analysis]
19 Schönberger M, Trauner D. A photochromic agonist for μ-opioid receptors. Angew Chem Int Ed Engl 2014;53:3264-7. [PMID: 24519993 DOI: 10.1002/anie.201309633] [Cited by in Crossref: 87] [Cited by in F6Publishing: 77] [Article Influence: 10.9] [Reference Citation Analysis]
20 Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2021. [PMID: 33686282 DOI: 10.1038/s41551-021-00683-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Bruchas MR, Roth BL. New Technologies for Elucidating Opioid Receptor Function. Trends Pharmacol Sci 2016;37:279-89. [PMID: 26833118 DOI: 10.1016/j.tips.2016.01.001] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 6.7] [Reference Citation Analysis]
22 Sim JY, Haney MP, Park SI, McCall JG, Jeong JW. Microfluidic neural probes: in vivo tools for advancing neuroscience. Lab Chip 2017;17:1406-35. [PMID: 28349140 DOI: 10.1039/c7lc00103g] [Cited by in Crossref: 47] [Cited by in F6Publishing: 17] [Article Influence: 11.8] [Reference Citation Analysis]
23 Corder G, Castro DC, Bruchas MR, Scherrer G. Endogenous and Exogenous Opioids in Pain. Annu Rev Neurosci 2018;41:453-73. [PMID: 29852083 DOI: 10.1146/annurev-neuro-080317-061522] [Cited by in Crossref: 106] [Cited by in F6Publishing: 96] [Article Influence: 26.5] [Reference Citation Analysis]
24 Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019;102:529-52. [PMID: 31071288 DOI: 10.1016/j.neuron.2019.03.003] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 17.7] [Reference Citation Analysis]
25 McCall JG, Qazi R, Shin G, Li S, Ikram MH, Jang KI, Liu Y, Al-Hasani R, Bruchas MR, Jeong JW, Rogers JA. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat Protoc 2017;12:219-37. [PMID: 28055036 DOI: 10.1038/nprot.2016.155] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
26 Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2019;20:514-32. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Cited by in Crossref: 58] [Cited by in F6Publishing: 45] [Article Influence: 29.0] [Reference Citation Analysis]
27 Broichhagen J, Levitz J. Advances in tethered photopharmacology for precise optical control of signaling proteins. Curr Opin Pharmacol 2022;63:102196. [PMID: 35245800 DOI: 10.1016/j.coph.2022.102196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Smith SJ, von Zastrow M. A Molecular Landscape of Mouse Hippocampal Neuromodulation. Front Neural Circuits 2022;16:836930. [DOI: 10.3389/fncir.2022.836930] [Reference Citation Analysis]
29 Qazi R, Gomez AM, Castro DC, Zou Z, Sim JY, Xiong Y, Abdo J, Kim CY, Anderson A, Lohner F, Byun S, Chul Lee B, Jang K, Xiao J, Bruchas MR, Jeong J. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat Biomed Eng 2019;3:655-69. [DOI: 10.1038/s41551-019-0432-1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
30 Li W, Luo R, Lin X, Jadhav AD, Zhang Z, Yan L, Chan C, Chen X, He J, Chen C, Shi P. Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials 2015;65:76-85. [DOI: 10.1016/j.biomaterials.2015.06.041] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
31 Flavell SW, Gogolla N, Lovett-barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022. [DOI: 10.1016/j.neuron.2022.04.030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Pittolo S, Lee H, Lladó A, Tosi S, Bosch M, Bardia L, Gómez-Santacana X, Llebaria A, Soriano E, Colombelli J, Poskanzer KE, Perea G, Gorostiza P. Reversible silencing of endogenous receptors in intact brain tissue using 2-photon pharmacology. Proc Natl Acad Sci U S A 2019;116:13680-9. [PMID: 31196955 DOI: 10.1073/pnas.1900430116] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
33 Hartrick CT, Poulin D, Molenaar R, Hartrick A. Dual-Acting Peripherally Restricted Delta/Kappa Opioid (CAV1001) Produces Antinociception in Animal Models of Sub-Acute and Chronic Pain. J Pain Res 2020;13:2461-74. [PMID: 33116788 DOI: 10.2147/JPR.S262303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Kramer RH, Mourot A, Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 2013;16:816-23. [PMID: 23799474 DOI: 10.1038/nn.3424] [Cited by in Crossref: 156] [Cited by in F6Publishing: 131] [Article Influence: 17.3] [Reference Citation Analysis]
35 Bodnar RJ. Endogenous opiates and behavior: 2012. Peptides 2013;50:55-95. [PMID: 24126281 DOI: 10.1016/j.peptides.2013.10.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 7.1] [Reference Citation Analysis]
36 Banghart MR, Williams JT, Shah RC, Lavis LD, Sabatini BL. Caged naloxone reveals opioid signaling deactivation kinetics. Mol Pharmacol 2013;84:687-95. [PMID: 23960100 DOI: 10.1124/mol.113.088096] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
37 Shen Y, Luchetti A, Fernandes G, Do Heo W, Silva AJ. The emergence of molecular systems neuroscience. Mol Brain 2022;15:7. [PMID: 34983613 DOI: 10.1186/s13041-021-00885-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Sainlos M, Iskenderian-epps WS, Olivier NB, Choquet D, Imperiali B. Caged Mono- and Divalent Ligands for Light-Assisted Disruption of PDZ Domain-Mediated Interactions. J Am Chem Soc 2013;135:4580-3. [DOI: 10.1021/ja309870q] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
39 Aleixandre-Carrera F, Engelmayer N, Ares-Suárez D, Acosta MDC, Belmonte C, Gallar J, Meseguer V, Binshtok AM. Optical Assessment of Nociceptive TRP Channel Function at the Peripheral Nerve Terminal. Int J Mol Sci 2021;22:E481. [PMID: 33418928 DOI: 10.3390/ijms22020481] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Reference Citation Analysis]
41 Moulton KR, Sadiki A, Koleva BN, Ombelets LJ, Tran TH, Liu S, Wang B, Chen H, Micheloni E, Beuning PJ, O’doherty GA, Zhou ZS. Site-Specific Reversible Protein and Peptide Modification: Transglutaminase-Catalyzed Glutamine Conjugation and Bioorthogonal Light-Mediated Removal. Bioconjugate Chem 2019;30:1617-21. [DOI: 10.1021/acs.bioconjchem.9b00145] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
42 von Zastrow M, Williams JT. Modulating neuromodulation by receptor membrane traffic in the endocytic pathway. Neuron 2012;76:22-32. [PMID: 23040804 DOI: 10.1016/j.neuron.2012.09.022] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]
43 Banghart MR, Neufeld SQ, Wong NC, Sabatini BL. Enkephalin Disinhibits Mu Opioid Receptor-Rich Striatal Patches via Delta Opioid Receptors. Neuron 2015;88:1227-39. [PMID: 26671460 DOI: 10.1016/j.neuron.2015.11.010] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 8.7] [Reference Citation Analysis]
44 Schönberger M, Trauner D. Ein photochromer Agonist für μ-Opioidrezeptoren. Angew Chem 2014;126:3329-32. [DOI: 10.1002/ange.201309633] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
45 Olson JP, Banghart MR, Sabatini BL, Ellis-Davies GC. Spectral evolution of a photochemical protecting group for orthogonal two-color uncaging with visible light. J Am Chem Soc 2013;135:15948-54. [PMID: 24117060 DOI: 10.1021/ja408225k] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 8.8] [Reference Citation Analysis]
46 Karkhanis AN, Al-Hasani R. Dynorphin and its role in alcohol use disorder. Brain Res 2020;1735:146742. [PMID: 32114059 DOI: 10.1016/j.brainres.2020.146742] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]