BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Constantinople CM, Bruno RM. Effects and mechanisms of wakefulness on local cortical networks. Neuron 2011;69:1061-8. [PMID: 21435553 DOI: 10.1016/j.neuron.2011.02.040] [Cited by in Crossref: 254] [Cited by in F6Publishing: 260] [Article Influence: 23.1] [Reference Citation Analysis]
Number Citing Articles
1 Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 2012;109:E2635-44. [PMID: 22955882 DOI: 10.1073/pnas.1202526109] [Cited by in Crossref: 151] [Cited by in F6Publishing: 140] [Article Influence: 15.1] [Reference Citation Analysis]
2 Sakata S, Harris KD. Laminar-dependent effects of cortical state on auditory cortical spontaneous activity. Front Neural Circuits 2012;6:109. [PMID: 23267317 DOI: 10.3389/fncir.2012.00109] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 4.4] [Reference Citation Analysis]
3 Favero M, Varghese G, Castro-Alamancos MA. The state of somatosensory cortex during neuromodulation. J Neurophysiol 2012;108:1010-24. [PMID: 22623484 DOI: 10.1152/jn.00256.2012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 2.6] [Reference Citation Analysis]
4 Eide PK, Vinje V, Pripp AH, Mardal KA, Ringstad G. Sleep deprivation impairs molecular clearance from the human brain. Brain 2021;144:863-74. [PMID: 33829232 DOI: 10.1093/brain/awaa443] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
5 Parker PD, Suryavanshi P, Melone M, Sawant-Pokam PA, Reinhart KM, Kaufmann D, Theriot JJ, Pugliese A, Conti F, Shuttleworth CW, Pietrobon D, Brennan KC. Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron 2021;109:611-628.e8. [PMID: 33321071 DOI: 10.1016/j.neuron.2020.11.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Petty GH, Kinnischtzke AK, Hong YK, Bruno RM. Effects of arousal and movement on secondary somatosensory and visual thalamus. Elife 2021;10:e67611. [PMID: 34842139 DOI: 10.7554/eLife.67611] [Reference Citation Analysis]
7 Krause BM, Raz A, Uhlrich DJ, Smith PH, Banks MI. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity. Front Syst Neurosci 2014;8:170. [PMID: 25285071 DOI: 10.3389/fnsys.2014.00170] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
8 Rossant C, Leijon S, Magnusson AK, Brette R. Sensitivity of noisy neurons to coincident inputs. J Neurosci 2011;31:17193-206. [PMID: 22114286 DOI: 10.1523/JNEUROSCI.2482-11.2011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
9 Taub AH, Katz Y, Lampl I. Cortical balance of excitation and inhibition is regulated by the rate of synaptic activity. J Neurosci 2013;33:14359-68. [PMID: 24005289 DOI: 10.1523/JNEUROSCI.1748-13.2013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
10 Wekselblatt JB, Niell CM. Behavioral State--Getting "In The Zone". Neuron 2015;87:7-9. [PMID: 26139365 DOI: 10.1016/j.neuron.2015.06.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
11 Marzo A, Totah NK, Neves RM, Logothetis NK, Eschenko O. Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex. Journal of Neurophysiology 2014;111:2570-88. [DOI: 10.1152/jn.00920.2013] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.1] [Reference Citation Analysis]
12 Pal D, Silverstein BH, Lee H, Mashour GA. Neural Correlates of Wakefulness, Sleep, and General Anesthesia: An Experimental Study in Rat. Anesthesiology 2016;125:929-42. [PMID: 27617688 DOI: 10.1097/ALN.0000000000001342] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 9.6] [Reference Citation Analysis]
13 Markram H, Muller E, Ramaswamy S, Reimann M, Abdellah M, Sanchez C, Ailamaki A, Alonso-nanclares L, Antille N, Arsever S, Kahou G, Berger T, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol J, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert M, Ghobril J, Gidon A, Graham J, Gupta A, Haenel V, Hay E, Heinis T, Hernando J, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King J, Kisvarday Z, Kumbhar P, Lasserre S, Le bé J, Magalhães B, Merchán-pérez A, Meystre J, Morrice B, Muller J, Muñoz-céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton T, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez J, Riquelme J, Rössert C, Sfyrakis K, Shi Y, Shillcock J, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-rodriguez M, Tränkler T, Van geit W, Díaz J, Walker R, Wang Y, Zaninetta S, Defelipe J, Hill S, Segev I, Schürmann F. Reconstruction and Simulation of Neocortical Microcircuitry. Cell 2015;163:456-92. [DOI: 10.1016/j.cell.2015.09.029] [Cited by in Crossref: 739] [Cited by in F6Publishing: 479] [Article Influence: 105.6] [Reference Citation Analysis]
14 Hirase H, Iwai Y, Takata N, Shinohara Y, Mishima T. Volume transmission signalling via astrocytes. Philos Trans R Soc Lond B Biol Sci 2014;369:20130604. [PMID: 25225097 DOI: 10.1098/rstb.2013.0604] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 5.9] [Reference Citation Analysis]
15 Phillips EAK, Schreiner CE, Hasenstaub AR. Diverse effects of stimulus history in waking mouse auditory cortex. J Neurophysiol 2017;118:1376-93. [PMID: 28566458 DOI: 10.1152/jn.00094.2017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
16 Mei J, Muller E, Ramaswamy S. Informing deep neural networks by multiscale principles of neuromodulatory systems. Trends in Neurosciences 2022. [DOI: 10.1016/j.tins.2021.12.008] [Reference Citation Analysis]
17 Colonnese MT. Rapid developmental emergence of stable depolarization during wakefulness by inhibitory balancing of cortical network excitability. J Neurosci 2014;34:5477-85. [PMID: 24741038 DOI: 10.1523/JNEUROSCI.3659-13.2014] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
18 O'Donnell J, Ding F, Nedergaard M. Distinct functional states of astrocytes during sleep and wakefulness: Is norepinephrine the master regulator? Curr Sleep Med Rep 2015;1:1-8. [PMID: 26618103 DOI: 10.1007/s40675-014-0004-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
19 Vardar B, Güçlü B. Effects of basal forebrain stimulation on the vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Brain Struct Funct 2020;225:1761-76. [PMID: 32495132 DOI: 10.1007/s00429-020-02091-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Vazey EM, Moorman DE, Aston-Jones G. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proc Natl Acad Sci U S A 2018;115:E9439-48. [PMID: 30232259 DOI: 10.1073/pnas.1803716115] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 14.5] [Reference Citation Analysis]
21 Krom AJ, Marmelshtein A, Gelbard-Sagiv H, Tankus A, Hayat H, Hayat D, Matot I, Strauss I, Fahoum F, Soehle M, Boström J, Mormann F, Fried I, Nir Y. Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex. Proc Natl Acad Sci U S A 2020;117:11770-80. [PMID: 32398367 DOI: 10.1073/pnas.1917251117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Sellers KK, Bennett DV, Fröhlich F. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing. Brain Res 2015;1598:31-45. [PMID: 25498982 DOI: 10.1016/j.brainres.2014.12.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
23 Lombardo JA, Macellaio MV, Liu B, Palmer SE, Osborne LC. State dependence of stimulus-induced variability tuning in macaque MT. PLoS Comput Biol 2018;14:e1006527. [PMID: 30312315 DOI: 10.1371/journal.pcbi.1006527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
24 Kato R, Yamanaka M, Yokota E, Koshikawa N, Kobayashi M. Spike Timing Rigidity Is Maintained in Bursting Neurons under Pentobarbital-Induced Anesthetic Conditions. Front Neural Circuits 2016;10:86. [PMID: 27895555 DOI: 10.3389/fncir.2016.00086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Lecrux C, Hamel E. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B Biol Sci 2016;371:20150350. [PMID: 27574304 DOI: 10.1098/rstb.2015.0350] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 10.2] [Reference Citation Analysis]
26 Chadderton P, Schaefer AT, Williams SR, Margrie TW. Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons. Nat Rev Neurosci 2014;15:71-83. [PMID: 24434910 DOI: 10.1038/nrn3648] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.5] [Reference Citation Analysis]
27 Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res 2016;1641:163-76. [PMID: 26820639 DOI: 10.1016/j.brainres.2016.01.033] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
28 Devilbiss DM. Consequences of tuning network function by tonic and phasic locus coeruleus output and stress: Regulating detection and discrimination of peripheral stimuli. Brain Res 2019;1709:16-27. [PMID: 29908165 DOI: 10.1016/j.brainres.2018.06.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
29 Depaulis A, David O, Charpier S. The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods 2016;260:159-74. [PMID: 26068173 DOI: 10.1016/j.jneumeth.2015.05.022] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 9.0] [Reference Citation Analysis]
30 Reinhold K, Lien AD, Scanziani M. Distinct recurrent versus afferent dynamics in cortical visual processing. Nat Neurosci 2015;18:1789-97. [PMID: 26502263 DOI: 10.1038/nn.4153] [Cited by in Crossref: 114] [Cited by in F6Publishing: 81] [Article Influence: 16.3] [Reference Citation Analysis]
31 Grueschow M, Kleim B, Ruff CC. Role of the locus coeruleus arousal system in cognitive control. J Neuroendocrinol 2020;32:e12890. [PMID: 32820571 DOI: 10.1111/jne.12890] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Lee AK, Brecht M. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior. Trends in Neurosciences 2018;41:385-403. [DOI: 10.1016/j.tins.2018.03.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
33 Froemke RC. Plasticity of cortical excitatory-inhibitory balance. Annu Rev Neurosci 2015;38:195-219. [PMID: 25897875 DOI: 10.1146/annurev-neuro-071714-034002] [Cited by in Crossref: 223] [Cited by in F6Publishing: 175] [Article Influence: 31.9] [Reference Citation Analysis]
34 Stringer C, Pachitariu M, Steinmetz NA, Okun M, Bartho P, Harris KD, Sahani M, Lesica NA. Inhibitory control of correlated intrinsic variability in cortical networks. Elife 2016;5:e19695. [PMID: 27926356 DOI: 10.7554/eLife.19695] [Cited by in Crossref: 59] [Cited by in F6Publishing: 27] [Article Influence: 9.8] [Reference Citation Analysis]
35 de Sousa AF, Cowansage KK, Zutshi I, Cardozo LM, Yoo EJ, Leutgeb S, Mayford M. Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proc Natl Acad Sci U S A 2019;116:8576-81. [PMID: 30877252 DOI: 10.1073/pnas.1818432116] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 16.0] [Reference Citation Analysis]
36 Iurilli G, Benfenati F, Medini P. Loss of visually driven synaptic responses in layer 4 regular-spiking neurons of rat visual cortex in absence of competing inputs. Cereb Cortex 2012;22:2171-81. [PMID: 22047965 DOI: 10.1093/cercor/bhr304] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
37 Busse L. The influence of locomotion on sensory processing and its underlying neuronal circuits. e-Neuroforum 2018;24:A41-51. [DOI: 10.1515/nf-2017-a046] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
38 Thivierge JP. Frequency-separated principal component analysis of cortical population activity. J Neurophysiol 2020;124:668-81. [PMID: 32727265 DOI: 10.1152/jn.00167.2020] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Lebedeva J, Zakharov A, Burkhanova G, Chernova K, Khazipov R. The Effects of NMDA Receptor Blockade on Sensory-Evoked Responses in Superficial Layers of the Rat Barrel Cortex. Front Cell Neurosci 2019;13:259. [PMID: 31231195 DOI: 10.3389/fncel.2019.00259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Benedetti BL, Takashima Y, Wen JA, Urban-Ciecko J, Barth AL. Differential wiring of layer 2/3 neurons drives sparse and reliable firing during neocortical development. Cereb Cortex 2013;23:2690-9. [PMID: 22918982 DOI: 10.1093/cercor/bhs257] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
41 Vinck M, Batista-Brito R, Knoblich U, Cardin JA. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 2015;86:740-54. [PMID: 25892300 DOI: 10.1016/j.neuron.2015.03.028] [Cited by in Crossref: 381] [Cited by in F6Publishing: 288] [Article Influence: 54.4] [Reference Citation Analysis]
42 Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2018;12:64. [PMID: 30670952 DOI: 10.3389/fnsys.2018.00064] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
43 Fazlali Z, Ranjbar-Slamloo Y, Adibi M, Arabzadeh E. Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex. Front Neural Circuits 2016;10:14. [PMID: 27047339 DOI: 10.3389/fncir.2016.00014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
44 Magrassi L, Zippo AG, Azzalin A, Bastianello S, Imberti R, Biella GEM. Single unit activities recorded in the thalamus and the overlying parietal cortex of subjects affected by disorders of consciousness. PLoS One 2018;13:e0205967. [PMID: 30403761 DOI: 10.1371/journal.pone.0205967] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
45 Gao YR, Ma Y, Zhang Q, Winder AT, Liang Z, Antinori L, Drew PJ, Zhang N. Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. Neuroimage 2017;153:382-98. [PMID: 27908788 DOI: 10.1016/j.neuroimage.2016.11.069] [Cited by in Crossref: 84] [Cited by in F6Publishing: 61] [Article Influence: 14.0] [Reference Citation Analysis]
46 Hay E, Segev I. Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cereb Cortex 2015;25:3561-71. [PMID: 25205662 DOI: 10.1093/cercor/bhu200] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
47 Semyachkina-Glushkovskaya O, Penzel T, Blokhina I, Khorovodov A, Fedosov I, Yu T, Karandin G, Evsukova A, Elovenko D, Adushkina V, Shirokov A, Dubrovskii A, Terskov A, Navolokin N, Tzoy M, Ageev V, Agranovich I, Telnova V, Tsven A, Kurths J. Night Photostimulation of Clearance of Beta-Amyloid from Mouse Brain: New Strategies in Preventing Alzheimer's Disease. Cells 2021;10:3289. [PMID: 34943796 DOI: 10.3390/cells10123289] [Reference Citation Analysis]
48 Mather M, Clewett D, Sakaki M, Harley CW. Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2016;39:e200. [PMID: 26126507 DOI: 10.1017/S0140525X15000667] [Cited by in Crossref: 221] [Cited by in F6Publishing: 123] [Article Influence: 31.6] [Reference Citation Analysis]
49 Polack PO, Friedman J, Golshani P. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat Neurosci 2013;16:1331-9. [PMID: 23872595 DOI: 10.1038/nn.3464] [Cited by in Crossref: 359] [Cited by in F6Publishing: 316] [Article Influence: 39.9] [Reference Citation Analysis]
50 Laviv T, Yasuda R. Imaging neuronal protein signaling dynamics in vivo. Curr Opin Neurobiol 2021;69:68-75. [PMID: 33684848 DOI: 10.1016/j.conb.2021.02.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Ma L, Jongbloets BC, Xiong WH, Melander JB, Qin M, Lameyer TJ, Harrison MF, Zemelman BV, Mao T, Zhong H. A Highly Sensitive A-Kinase Activity Reporter for Imaging Neuromodulatory Events in Awake Mice. Neuron 2018;99:665-679.e5. [PMID: 30100256 DOI: 10.1016/j.neuron.2018.07.020] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 10.5] [Reference Citation Analysis]
52 Oberlaender M, de Kock CP, Bruno RM, Ramirez A, Meyer HS, Dercksen VJ, Helmstaedter M, Sakmann B. Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb Cortex 2012;22:2375-91. [PMID: 22089425 DOI: 10.1093/cercor/bhr317] [Cited by in Crossref: 181] [Cited by in F6Publishing: 159] [Article Influence: 16.5] [Reference Citation Analysis]
53 Martins AR, Froemke RC. Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex. Nat Neurosci 2015;18:1483-92. [PMID: 26301326 DOI: 10.1038/nn.4090] [Cited by in Crossref: 108] [Cited by in F6Publishing: 86] [Article Influence: 15.4] [Reference Citation Analysis]
54 Schwalm M, Rosales Jubal E. Back to Pupillometry: How Cortical Network State Fluctuations Tracked by Pupil Dynamics Could Explain Neural Signal Variability in Human Cognitive Neuroscience. eNeuro 2017;4:ENEURO. [PMID: 29379876 DOI: 10.1523/ENEURO.0293-16.2017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.4] [Reference Citation Analysis]
55 Toriello M, González-Quintanilla V, Pérez-Pereda S, Fontanillas N, Pascual J. The potential role of the glymphatic system in headache disorders. Pain Med 2021:pnab137. [PMID: 33839781 DOI: 10.1093/pm/pnab137] [Reference Citation Analysis]
56 Lee D, Lee AK. Whole-Cell Recording in the Awake Brain. Cold Spring Harb Protoc 2017;2017:pdb.top087304. [PMID: 28373516 DOI: 10.1101/pdb.top087304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
57 Ng KA, Greenwald E, Xu YP, Thakor NV. Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput 2016;54:45-62. [PMID: 26798055 DOI: 10.1007/s11517-015-1431-3] [Cited by in Crossref: 46] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
58 Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J Neurophysiol 2021;125:1899-919. [PMID: 33826874 DOI: 10.1152/jn.00017.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
59 Newman JP, Fong MF, Millard DC, Whitmire CJ, Stanley GB, Potter SM. Optogenetic feedback control of neural activity. Elife 2015;4:e07192. [PMID: 26140329 DOI: 10.7554/eLife.07192] [Cited by in Crossref: 62] [Cited by in F6Publishing: 28] [Article Influence: 8.9] [Reference Citation Analysis]
60 Neves RM, van Keulen S, Yang M, Logothetis NK, Eschenko O. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex. J Neurophysiol 2018;119:904-20. [PMID: 29093170 DOI: 10.1152/jn.00552.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
61 Kato HK, Asinof SK, Isaacson JS. Network-Level Control of Frequency Tuning in Auditory Cortex. Neuron 2017;95:412-423.e4. [PMID: 28689982 DOI: 10.1016/j.neuron.2017.06.019] [Cited by in Crossref: 91] [Cited by in F6Publishing: 64] [Article Influence: 18.2] [Reference Citation Analysis]
62 Melonakos ED, White JA, Fernandez FR. Gain Modulation of Cholinergic Neurons in the Medial Septum-Diagonal Band of Broca Through Hyperpolarization. Hippocampus 2016;26:1525-41. [PMID: 27588894 DOI: 10.1002/hipo.22653] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
63 Ramirez A, Pnevmatikakis EA, Merel J, Paninski L, Miller KD, Bruno RM. Spatiotemporal receptive fields of barrel cortex revealed by reverse correlation of synaptic input. Nat Neurosci 2014;17:866-75. [PMID: 24836076 DOI: 10.1038/nn.3720] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
64 Andres DS, Cerquetti D, Merello M, Stoop R. Neuronal Entropy Depends on the Level of Alertness in the Parkinsonian Globus Pallidus in vivo. Front Neurol 2014;5:96. [PMID: 25009529 DOI: 10.3389/fneur.2014.00096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
65 Adapa R. Consciousness and Anesthesia. In: Absalom AR, Mason KP, editors. Total Intravenous Anesthesia and Target Controlled Infusions. Cham: Springer International Publishing; 2017. pp. 63-78. [DOI: 10.1007/978-3-319-47609-4_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
66 Nolte M, Reimann MW, King JG, Markram H, Muller EB. Cortical reliability amid noise and chaos. Nat Commun 2019;10:3792. [PMID: 31439838 DOI: 10.1038/s41467-019-11633-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
67 Hasegawa E, Yanagisawa M, Sakurai T, Mieda M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 2014;124:604-16. [PMID: 24382351 DOI: 10.1172/JCI71017] [Cited by in Crossref: 96] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
68 McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci Biobehav Rev 2019;105:190-9. [PMID: 31260703 DOI: 10.1016/j.neubiorev.2019.06.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
69 Womelsdorf T, Ardid S, Everling S, Valiante TA. Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control. Curr Biol 2014;24:2613-21. [PMID: 25308081 DOI: 10.1016/j.cub.2014.09.046] [Cited by in Crossref: 72] [Cited by in F6Publishing: 55] [Article Influence: 9.0] [Reference Citation Analysis]
70 Funk CM, Honjoh S, Rodriguez AV, Cirelli C, Tononi G. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep. Curr Biol 2016;26:396-403. [PMID: 26804554 DOI: 10.1016/j.cub.2015.11.062] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 13.7] [Reference Citation Analysis]
71 Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2021;101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
72 Phillips WA, Larkum ME, Harley CW, Silverstein SM. The effects of arousal on apical amplification and conscious state. Neurosci Conscious 2016;2016:niw015. [PMID: 29877512 DOI: 10.1093/nc/niw015] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
73 Vijayraghavan S, Everling S. Neuromodulation of Persistent Activity and Working Memory Circuitry in Primate Prefrontal Cortex by Muscarinic Receptors. Front Neural Circuits 2021;15:648624. [PMID: 33790746 DOI: 10.3389/fncir.2021.648624] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Mu Y, Li XQ, Zhang B, Du JL. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. Neuron 2012;75:688-99. [PMID: 22920259 DOI: 10.1016/j.neuron.2012.05.035] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 5.5] [Reference Citation Analysis]
75 Tan AY, Andoni S, Priebe NJ. A spontaneous state of weakly correlated synaptic excitation and inhibition in visual cortex. Neuroscience 2013;247:364-75. [PMID: 23727451 DOI: 10.1016/j.neuroscience.2013.05.037] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
76 Stanley GB, Jin J, Wang Y, Desbordes G, Wang Q, Black MJ, Alonso JM. Visual orientation and directional selectivity through thalamic synchrony. J Neurosci 2012;32:9073-88. [PMID: 22745507 DOI: 10.1523/JNEUROSCI.4968-11.2012] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
77 Fernandez LMJ, Comte JC, Le Merre P, Lin JS, Salin PA, Crochet S. Highly Dynamic Spatiotemporal Organization of Low-Frequency Activities During Behavioral States in the Mouse Cerebral Cortex. Cereb Cortex 2017;27:5444-62. [PMID: 27742711 DOI: 10.1093/cercor/bhw311] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
78 McFarland JM, Cumming BG, Butts DA. Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements. J Neurosci 2016;36:6225-41. [PMID: 27277801 DOI: 10.1523/JNEUROSCI.4660-15.2016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
79 Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018;12:4. [PMID: 29434539 DOI: 10.3389/fncir.2018.00004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
80 Deco G, Hagmann P, Hudetz AG, Tononi G. Modeling resting-state functional networks when the cortex falls asleep: local and global changes. Cereb Cortex 2014;24:3180-94. [PMID: 23845770 DOI: 10.1093/cercor/bht176] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
81 Sherpa AD, Xiao F, Joseph N, Aoki C, Hrabetova S. Activation of β-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume. Synapse 2016;70:307-16. [PMID: 27085090 DOI: 10.1002/syn.21908] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
82 Woodruff AR, McGarry LM, Vogels TP, Inan M, Anderson SA, Yuste R. State-dependent function of neocortical chandelier cells. J Neurosci 2011;31:17872-86. [PMID: 22159102 DOI: 10.1523/JNEUROSCI.3894-11.2011] [Cited by in Crossref: 79] [Cited by in F6Publishing: 65] [Article Influence: 7.9] [Reference Citation Analysis]
83 Wilson DE, Whitney DE, Scholl B, Fitzpatrick D. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat Neurosci 2016;19:1003-9. [PMID: 27294510 DOI: 10.1038/nn.4323] [Cited by in Crossref: 126] [Cited by in F6Publishing: 89] [Article Influence: 21.0] [Reference Citation Analysis]
84 Fung CCA, Fukai T. Transient and Persistent UP States during Slow-wave Oscillation and their Implications for Cell-Assembly Dynamics. Sci Rep 2018;8:10680. [PMID: 30013083 DOI: 10.1038/s41598-018-28973-y] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
85 [DOI: 10.1101/306019] [Cited by in Crossref: 31] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
86 Long MA, Lee AK. Intracellular recording in behaving animals. Curr Opin Neurobiol 2012;22:34-44. [PMID: 22054814 DOI: 10.1016/j.conb.2011.10.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
87 Sawant-Pokam PA, Vail TJ, Metcalf CS, Maguire JL, McKean TO, McKean NO, Brennan KC. Preventing neuronal edema increases network excitability after traumatic brain injury. J Clin Invest 2020;130:6005-20. [PMID: 33044227 DOI: 10.1172/JCI134793] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Hung CP, Cui D, Chen YP, Lin CP, Levine MR. Correlated activity supports efficient cortical processing. Front Comput Neurosci 2014;8:171. [PMID: 25610392 DOI: 10.3389/fncom.2014.00171] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
89 van Kempen J, Gieselmann MA, Boyd M, Steinmetz NA, Moore T, Engel TA, Thiele A. Top-down coordination of local cortical state during selective attention. Neuron 2021;109:894-904.e8. [PMID: 33406410 DOI: 10.1016/j.neuron.2020.12.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
90 Goel A, Buonomano DV. Chronic electrical stimulation homeostatically decreases spontaneous activity, but paradoxically increases evoked network activity. J Neurophysiol 2013;109:1824-36. [PMID: 23324317 DOI: 10.1152/jn.00612.2012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
91 Elyada YM, Mizrahi A. Becoming a mother-circuit plasticity underlying maternal behavior. Curr Opin Neurobiol 2015;35:49-56. [PMID: 26143475 DOI: 10.1016/j.conb.2015.06.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
92 Shimaoka D, Song C, Knöpfel T. State-Dependent Modulation of Slow Wave Motifs towards Awakening. Front Cell Neurosci 2017;11:108. [PMID: 28484371 DOI: 10.3389/fncel.2017.00108] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
93 Vyazovskiy VV. Sleep, recovery, and metaregulation: explaining the benefits of sleep. Nat Sci Sleep 2015;7:171-84. [PMID: 26719733 DOI: 10.2147/NSS.S54036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
94 Supp G, Siegel M, Hipp J, Engel A. Cortical Hypersynchrony Predicts Breakdown of Sensory Processing during Loss of Consciousness. Current Biology 2011;21:1988-93. [DOI: 10.1016/j.cub.2011.10.017] [Cited by in Crossref: 118] [Cited by in F6Publishing: 103] [Article Influence: 10.7] [Reference Citation Analysis]
95 Bellesi M, Tononi G, Cirelli C, Serra PA. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle. Sleep 2016;39:143-54. [PMID: 26237776 DOI: 10.5665/sleep.5336] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
96 Lankarany M, Al-Basha D, Ratté S, Prescott SA. Differentially synchronized spiking enables multiplexed neural coding. Proc Natl Acad Sci U S A 2019;116:10097-102. [PMID: 31028148 DOI: 10.1073/pnas.1812171116] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
97 Reato D, Gasca F, Datta A, Bikson M, Marshall L, Parra LC. Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Comput Biol 2013;9:e1002898. [PMID: 23459152 DOI: 10.1371/journal.pcbi.1002898] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 6.2] [Reference Citation Analysis]
98 Reig R, Zerlaut Y, Vergara R, Destexhe A, Sanchez-Vives MV. Gain modulation of synaptic inputs by network state in auditory cortex in vivo. J Neurosci 2015;35:2689-702. [PMID: 25673859 DOI: 10.1523/JNEUROSCI.2004-14.2015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
99 Kazemipour A, Novak O, Flickinger D, Marvin JS, Abdelfattah AS, King J, Borden PM, Kim JJ, Al-Abdullatif SH, Deal PE, Miller EW, Schreiter ER, Druckmann S, Svoboda K, Looger LL, Podgorski K. Kilohertz frame-rate two-photon tomography. Nat Methods 2019;16:778-86. [PMID: 31363222 DOI: 10.1038/s41592-019-0493-9] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 21.3] [Reference Citation Analysis]
100 Khateb M, Schiller J, Schiller Y. State-Dependent Synchrony and Functional Connectivity in the Primary and Secondary Whisker Somatosensory Cortices. Front Syst Neurosci 2021;15:713397. [PMID: 34616281 DOI: 10.3389/fnsys.2021.713397] [Reference Citation Analysis]
101 [DOI: 10.1101/539502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
102 Dahl MJ, Mather M, Werkle-Bergner M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn Sci 2022;26:38-52. [PMID: 34799252 DOI: 10.1016/j.tics.2021.10.009] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
103 Happel MF. Dopaminergic impact on local and global cortical circuit processing during learning. Behav Brain Res 2016;299:32-41. [PMID: 26608540 DOI: 10.1016/j.bbr.2015.11.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
104 Zhou M, Liang F, Xiong XR, Li L, Li H, Xiao Z, Tao HW, Zhang LI. Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat Neurosci 2014;17:841-50. [PMID: 24747575 DOI: 10.1038/nn.3701] [Cited by in Crossref: 192] [Cited by in F6Publishing: 164] [Article Influence: 24.0] [Reference Citation Analysis]
105 Petersen CCH. Sensorimotor processing in the rodent barrel cortex. Nat Rev Neurosci 2019;20:533-46. [PMID: 31367018 DOI: 10.1038/s41583-019-0200-y] [Cited by in Crossref: 71] [Cited by in F6Publishing: 50] [Article Influence: 23.7] [Reference Citation Analysis]
106 Nuñez A, Domínguez S, Buño W, Fernández de Sevilla D. Cholinergic-mediated response enhancement in barrel cortex layer V pyramidal neurons. J Neurophysiol 2012;108:1656-68. [PMID: 22723675 DOI: 10.1152/jn.00156.2012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
107 Vyazovskiy VV, Cui N, Rodriguez AV, Funk C, Cirelli C, Tononi G. The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice. Sleep 2014;37:1337-47. [PMID: 25083014 DOI: 10.5665/sleep.3926] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
108 Sarid L, Feldmeyer D, Gidon A, Sakmann B, Segev I. Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex. Cereb Cortex 2015;25:849-58. [PMID: 24165834 DOI: 10.1093/cercor/bht268] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
109 Kolb I, Talei Franzesi G, Wang M, Kodandaramaiah SB, Forest CR, Boyden ES, Singer AC. Evidence for Long-Timescale Patterns of Synaptic Inputs in CA1 of Awake Behaving Mice. J Neurosci 2018;38:1821-34. [PMID: 29279309 DOI: 10.1523/JNEUROSCI.1519-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
110 Bosman LW, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WH, Ju C, Gong W, Koekkoek SK, De Zeeuw CI. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 2011;5:53. [PMID: 22065951 DOI: 10.3389/fnint.2011.00053] [Cited by in Crossref: 135] [Cited by in F6Publishing: 126] [Article Influence: 12.3] [Reference Citation Analysis]
111 Sitdikova G, Zakharov A, Janackova S, Gerasimova E, Lebedeva J, Inacio AR, Zaynutdinova D, Minlebaev M, Holmes GL, Khazipov R. Isoflurane suppresses early cortical activity. Ann Clin Transl Neurol 2014;1:15-26. [PMID: 25356379 DOI: 10.1002/acn3.16] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
112 Treviño M. Inhibition Controls Asynchronous States of Neuronal Networks. Front Synaptic Neurosci 2016;8:11. [PMID: 27274721 DOI: 10.3389/fnsyn.2016.00011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
113 Tantirigama ML, Huang HH, Bekkers JM. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding. Proc Natl Acad Sci U S A 2017;114:2407-12. [PMID: 28196887 DOI: 10.1073/pnas.1620939114] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
114 Yang H, Bari BA, Cohen JY, O'Connor DH. Locus coeruleus spiking differently correlates with S1 cortex activity and pupil diameter in a tactile detection task. Elife 2021;10:e64327. [PMID: 33721552 DOI: 10.7554/eLife.64327] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Shen G, Shi WX. Amphetamine Promotes Cortical Up State in Part Via Dopamine Receptors. Front Pharmacol 2021;12:728729. [PMID: 34489713 DOI: 10.3389/fphar.2021.728729] [Reference Citation Analysis]
116 Cornejo VH, Ofer N, Yuste R. Voltage compartmentalization in dendritic spines in vivo. Science 2021;:eabg0501. [PMID: 34762487 DOI: 10.1126/science.abg0501] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Lutkenhoff ES, Chiang J, Tshibanda L, Kamau E, Kirsch M, Pickard JD, Laureys S, Owen AM, Monti MM. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann Neurol 2015;78:68-76. [PMID: 25893530 DOI: 10.1002/ana.24423] [Cited by in Crossref: 88] [Cited by in F6Publishing: 69] [Article Influence: 12.6] [Reference Citation Analysis]
118 Fan LZ, Kheifets S, Böhm UL, Wu H, Piatkevich KD, Xie ME, Parot V, Ha Y, Evans KE, Boyden ES, Takesian AE, Cohen AE. All-Optical Electrophysiology Reveals the Role of Lateral Inhibition in Sensory Processing in Cortical Layer 1. Cell 2020;180:521-535.e18. [PMID: 31978320 DOI: 10.1016/j.cell.2020.01.001] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 20.0] [Reference Citation Analysis]
119 de Lecea L. Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci 2015;25:367-78. [PMID: 25502546 DOI: 10.1007/7854_2014_364] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
120 Bellot-Saez A, Stevenson R, Kékesi O, Samokhina E, Ben-Abu Y, Morley JW, Buskila Y. Neuromodulation of Astrocytic K+ Clearance. Int J Mol Sci 2021;22:2520. [PMID: 33802343 DOI: 10.3390/ijms22052520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Winder AT, Echagarruga C, Zhang Q, Drew PJ. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state. Nat Neurosci 2017;20:1761-9. [PMID: 29184204 DOI: 10.1038/s41593-017-0007-y] [Cited by in Crossref: 73] [Cited by in F6Publishing: 57] [Article Influence: 14.6] [Reference Citation Analysis]
122 Barbero-Castillo A, Mateos-Aparicio P, Dalla Porta L, Camassa A, Perez-Mendez L, Sanchez-Vives MV. Impact of GABAA and GABAB Inhibition on Cortical Dynamics and Perturbational Complexity during Synchronous and Desynchronized States. J Neurosci 2021;41:5029-44. [PMID: 33906901 DOI: 10.1523/JNEUROSCI.1837-20.2021] [Reference Citation Analysis]
123 Ratté S, Hong S, De Schutter E, Prescott SA. Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer. Neuron 2013;78:758-72. [PMID: 23764282 DOI: 10.1016/j.neuron.2013.05.030] [Cited by in Crossref: 99] [Cited by in F6Publishing: 85] [Article Influence: 11.0] [Reference Citation Analysis]
124 Carcea I, Insanally MN, Froemke RC. Dynamics of auditory cortical activity during behavioural engagement and auditory perception. Nat Commun 2017;8:14412. [PMID: 28176787 DOI: 10.1038/ncomms14412] [Cited by in Crossref: 54] [Cited by in F6Publishing: 34] [Article Influence: 10.8] [Reference Citation Analysis]
125 Schmidt SL, Chew EY, Bennett DV, Hammad MA, Fröhlich F. Differential effects of cholinergic and noradrenergic neuromodulation on spontaneous cortical network dynamics. Neuropharmacology 2013;72:259-73. [PMID: 23643755 DOI: 10.1016/j.neuropharm.2013.04.045] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
126 Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. Spontaneous behaviors drive multidimensional, brainwide activity. Science 2019;364:255. [PMID: 31000656 DOI: 10.1126/science.aav7893] [Cited by in Crossref: 355] [Cited by in F6Publishing: 210] [Article Influence: 118.3] [Reference Citation Analysis]
127 Ecker AS, Berens P, Cotton RJ, Subramaniyan M, Denfield GH, Cadwell CR, Smirnakis SM, Bethge M, Tolias AS. State dependence of noise correlations in macaque primary visual cortex. Neuron 2014;82:235-48. [PMID: 24698278 DOI: 10.1016/j.neuron.2014.02.006] [Cited by in Crossref: 225] [Cited by in F6Publishing: 180] [Article Influence: 28.1] [Reference Citation Analysis]
128 Fernandez FR, Malerba P, Bressloff PC, White JA. Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity. J Neurosci 2013;33:6027-40. [PMID: 23554484 DOI: 10.1523/JNEUROSCI.3892-12.2013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
129 Breton-Provencher V, Drummond GT, Sur M. Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front Neural Circuits 2021;15:638007. [PMID: 34163331 DOI: 10.3389/fncir.2021.638007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
130 Sachdev RN, Krause MR, Mazer JA. Surround suppression and sparse coding in visual and barrel cortices. Front Neural Circuits 2012;6:43. [PMID: 22783169 DOI: 10.3389/fncir.2012.00043] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
131 Kaufman M, Reinartz S, Ziv NE. Adaptation to prolonged neuromodulation in cortical cultures: an invariable return to network synchrony. BMC Biol 2014;12:83. [PMID: 25339462 DOI: 10.1186/s12915-014-0083-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
132 Zhao WJ, Kremkow J, Poulet JF. Translaminar Cortical Membrane Potential Synchrony in Behaving Mice. Cell Rep 2016;15:2387-99. [PMID: 27264185 DOI: 10.1016/j.celrep.2016.05.026] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
133 Romero-Sosa JL, Motanis H, Buonomano DV. Differential Excitability of PV and SST Neurons Results in Distinct Functional Roles in Inhibition Stabilization of Up States. J Neurosci 2021;41:7182-96. [PMID: 34253625 DOI: 10.1523/JNEUROSCI.2830-20.2021] [Reference Citation Analysis]
134 Kobak D, Pardo-Vazquez JL, Valente M, Machens CK, Renart A. State-dependent geometry of population activity in rat auditory cortex. Elife 2019;8:e44526. [PMID: 30969167 DOI: 10.7554/eLife.44526] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
135 Lenschow C, Brecht M. Barrel cortex membrane potential dynamics in social touch. Neuron 2015;85:718-25. [PMID: 25640075 DOI: 10.1016/j.neuron.2014.12.059] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
136 Alonso JM, Swadlow HA. Thalamus controls recurrent cortical dynamics. Nat Neurosci 2015;18:1703-4. [PMID: 26605879 DOI: 10.1038/nn.4175] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
137 Pesavento MJ, Pinto DJ. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs. J Neurophysiol 2012;108:2452-72. [PMID: 22896716 DOI: 10.1152/jn.00914.2011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
138 Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 2011;31:18155-65. [PMID: 22159127 DOI: 10.1523/JNEUROSCI.5289-11.2011] [Cited by in Crossref: 237] [Cited by in F6Publishing: 160] [Article Influence: 23.7] [Reference Citation Analysis]
139 Wester JC, Contreras D. Differential modulation of spontaneous and evoked thalamocortical network activity by acetylcholine level in vitro. J Neurosci 2013;33:17951-66. [PMID: 24198382 DOI: 10.1523/JNEUROSCI.1644-13.2013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
140 Schwalm M, Schmid F, Wachsmuth L, Backhaus H, Kronfeld A, Aedo Jury F, Prouvot PH, Fois C, Albers F, van Alst T, Faber C, Stroh A. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves. Elife 2017;6:e27602. [PMID: 28914607 DOI: 10.7554/eLife.27602] [Cited by in Crossref: 40] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
141 Fernandez FR, Rahsepar B, White JA. Differences in the Electrophysiological Properties of Mouse Somatosensory Layer 2/3 Neurons In Vivo and Slice Stem from Intrinsic Sources Rather than a Network-Generated High Conductance State. eNeuro 2018;5:ENEURO. [PMID: 29662946 DOI: 10.1523/ENEURO.0447-17.2018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
142 Kozák G, Földi T, Berényi A. Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats. eNeuro 2020;7:ENEURO. [PMID: 31862790 DOI: 10.1523/ENEURO.0253-19.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
143 Murata Y, Colonnese MT. Thalamus Controls Development and Expression of Arousal States in Visual Cortex. J Neurosci 2018;38:8772-86. [PMID: 30150360 DOI: 10.1523/JNEUROSCI.1519-18.2018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
144 Fernandez FR, Noueihed J, White JA. Voltage-Dependent Membrane Properties Shape the Size But Not the Frequency Content of Spontaneous Voltage Fluctuations in Layer 2/3 Somatosensory Cortex. J Neurosci 2019;39:2221-37. [PMID: 30655351 DOI: 10.1523/JNEUROSCI.1648-18.2019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
145 Murata Y, Colonnese MT. Thalamic inhibitory circuits and network activity development. Brain Res 2019;1706:13-23. [PMID: 30366019 DOI: 10.1016/j.brainres.2018.10.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
146 Ni J, Chen JL. Long-range cortical dynamics: a perspective from the mouse sensorimotor whisker system. Eur J Neurosci 2017;46:2315-24. [PMID: 28921729 DOI: 10.1111/ejn.13698] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
147 Zhang W, Bruno RM. High-order thalamic inputs to primary somatosensory cortex are stronger and longer lasting than cortical inputs. Elife 2019;8:e44158. [PMID: 30741160 DOI: 10.7554/eLife.44158] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 12.3] [Reference Citation Analysis]
148 Chen P, Xie Q, Wu X, Huang H, Lv W, Chen L, Guo Y, Zhang S, Hu H, Wang Y, Nie Y, Yu R, Huang R. Abnormal Effective Connectivity of the Anterior Forebrain Regions in Disorders of Consciousness. Neurosci Bull 2018;34:647-58. [PMID: 29959668 DOI: 10.1007/s12264-018-0250-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
149 Yavorska I, Wehr M. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits. Front Neural Circuits. 2016;10:76. [PMID: 27746722 DOI: 10.3389/fncir.2016.00076] [Cited by in Crossref: 89] [Cited by in F6Publishing: 79] [Article Influence: 14.8] [Reference Citation Analysis]
150 Ramaswamy S, Colangelo C, Markram H. Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity. Front Neural Circuits 2018;12:77. [PMID: 30356701 DOI: 10.3389/fncir.2018.00077] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
151 Sabri MM, Arabzadeh E. Information Processing Across Behavioral States: Modes of Operation and Population Dynamics in Rodent Sensory Cortex. Neuroscience 2018;368:214-28. [DOI: 10.1016/j.neuroscience.2017.09.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
152 Waterhouse BD, Navarra RL. The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Research 2019;1709:1-15. [DOI: 10.1016/j.brainres.2018.08.032] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 10.7] [Reference Citation Analysis]
153 Lovett-barron M, Losonczy A. Behavioral consequences of GABAergic neuronal diversity. Current Opinion in Neurobiology 2014;26:27-33. [DOI: 10.1016/j.conb.2013.11.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
154 Lee SH, Dan Y. Neuromodulation of brain states. Neuron 2012;76:209-22. [PMID: 23040816 DOI: 10.1016/j.neuron.2012.09.012] [Cited by in Crossref: 323] [Cited by in F6Publishing: 271] [Article Influence: 32.3] [Reference Citation Analysis]
155 Aedo-Jury F, Schwalm M, Hamzehpour L, Stroh A. Brain states govern the spatio-temporal dynamics of resting-state functional connectivity. Elife 2020;9:e53186. [PMID: 32568067 DOI: 10.7554/eLife.53186] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
156 Tran Y, Craig A, Craig R, Chai R, Nguyen H. The influence of mental fatigue on brain activity: Evidence from a systematic review with meta‐analyses. Psychophysiology 2020;57. [DOI: 10.1111/psyp.13554] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
157 Bellesi M, Riedner BA, Garcia-Molina GN, Cirelli C, Tononi G. Enhancement of sleep slow waves: underlying mechanisms and practical consequences. Front Syst Neurosci 2014;8:208. [PMID: 25389394 DOI: 10.3389/fnsys.2014.00208] [Cited by in Crossref: 107] [Cited by in F6Publishing: 93] [Article Influence: 13.4] [Reference Citation Analysis]
158 Schiemann J, Puggioni P, Dacre J, Pelko M, Domanski A, van Rossum MC, Duguid I. Cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output. Cell Rep 2015;11:1319-30. [PMID: 25981037 DOI: 10.1016/j.celrep.2015.04.042] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
159 Lissek T, Obenhaus HA, Ditzel DA, Nagai T, Miyawaki A, Sprengel R, Hasan MT. General Anesthetic Conditions Induce Network Synchrony and Disrupt Sensory Processing in the Cortex. Front Cell Neurosci 2016;10:64. [PMID: 27147963 DOI: 10.3389/fncel.2016.00064] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
160 Polack PO, Contreras D. Long-range parallel processing and local recurrent activity in the visual cortex of the mouse. J Neurosci 2012;32:11120-31. [PMID: 22875943 DOI: 10.1523/JNEUROSCI.6304-11.2012] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
161 Haider B, Häusser M, Carandini M. Inhibition dominates sensory responses in the awake cortex. Nature 2013;493:97-100. [PMID: 23172139 DOI: 10.1038/nature11665] [Cited by in Crossref: 339] [Cited by in F6Publishing: 319] [Article Influence: 33.9] [Reference Citation Analysis]
162 Petersen C, Crochet S. Synaptic Computation and Sensory Processing in Neocortical Layer 2/3. Neuron 2013;78:28-48. [DOI: 10.1016/j.neuron.2013.03.020] [Cited by in Crossref: 153] [Cited by in F6Publishing: 135] [Article Influence: 17.0] [Reference Citation Analysis]
163 Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017;118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
164 Fernandez FR, Malerba P, White JA. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations. PLoS Comput Biol 2015;11:e1004188. [PMID: 25909971 DOI: 10.1371/journal.pcbi.1004188] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
165 Huo Q, Chen M, He Q, Zhang J, Li B, Jin K, Chen X, Long C, Yang L. Prefrontal Cortical GABAergic Dysfunction Contributes to Aberrant UP-State Duration in APP Knockout Mice. Cereb Cortex 2017;27:4060-72. [PMID: 27552836 DOI: 10.1093/cercor/bhw218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
166 Becchetti A, Amadeo A. Why we forget our dreams: Acetylcholine and norepinephrine in wakefulness and REM sleep. Behav Brain Sci 2016;39. [DOI: 10.1017/s0140525x15001739] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
167 Harris KD, Thiele A. Cortical state and attention. Nat Rev Neurosci 2011;12:509-23. [PMID: 21829219 DOI: 10.1038/nrn3084] [Cited by in Crossref: 499] [Cited by in F6Publishing: 434] [Article Influence: 45.4] [Reference Citation Analysis]
168 Prince SM, Paulson AL, Jeong N, Zhang L, Amigues S, Singer AC. Alzheimer's pathology causes impaired inhibitory connections and reactivation of spatial codes during spatial navigation. Cell Rep 2021;35:109008. [PMID: 33882308 DOI: 10.1016/j.celrep.2021.109008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
169 Timofeev I. Neuronal plasticity and thalamocortical sleep and waking oscillations. Prog Brain Res 2011;193:121-44. [PMID: 21854960 DOI: 10.1016/B978-0-444-53839-0.00009-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
170 Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Prog Brain Res 2013;207:65-90. [PMID: 24309251 DOI: 10.1016/B978-0-444-63327-9.00003-5] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 6.9] [Reference Citation Analysis]
171 Bogdanov VB, Middleton NA, Theriot JJ, Parker PD, Abdullah OM, Ju YS, Hartings JA, Brennan KC. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations. J Neurosci 2016;36:4733-43. [PMID: 27122032 DOI: 10.1523/JNEUROSCI.3694-15.2016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 5.6] [Reference Citation Analysis]
172 Cui Y, Liu LD, McFarland JM, Pack CC, Butts DA. Inferring Cortical Variability from Local Field Potentials. J Neurosci 2016;36:4121-35. [PMID: 27053217 DOI: 10.1523/JNEUROSCI.2502-15.2016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
173 Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373-377. [PMID: 24136970 DOI: 10.1126/science.1241224] [Cited by in Crossref: 1956] [Cited by in F6Publishing: 1719] [Article Influence: 217.3] [Reference Citation Analysis]
174 de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol Psychiatry 2012;71:1046-52. [PMID: 22440618 DOI: 10.1016/j.biopsych.2012.01.032] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
175 Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF, Luhmann HJ, Schwarz C. Barrel cortex function. Progress in Neurobiology 2013;103:3-27. [DOI: 10.1016/j.pneurobio.2012.11.002] [Cited by in Crossref: 218] [Cited by in F6Publishing: 192] [Article Influence: 24.2] [Reference Citation Analysis]
176 Gonçalves JT, Anstey JE, Golshani P, Portera-Cailliau C. Circuit level defects in the developing neocortex of Fragile X mice. Nat Neurosci 2013;16:903-9. [PMID: 23727819 DOI: 10.1038/nn.3415] [Cited by in Crossref: 178] [Cited by in F6Publishing: 170] [Article Influence: 19.8] [Reference Citation Analysis]
177 Etherington SJ, Williams SR. Postnatal development of intrinsic and synaptic properties transforms signaling in the layer 5 excitatory neural network of the visual cortex. J Neurosci 2011;31:9526-37. [PMID: 21715617 DOI: 10.1523/JNEUROSCI.0458-11.2011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
178 Gao L, Wang X. Subthreshold Activity Underlying the Diversity and Selectivity of the Primary Auditory Cortex Studied by Intracellular Recordings in Awake Marmosets. Cereb Cortex 2019;29:994-1005. [PMID: 29377991 DOI: 10.1093/cercor/bhy006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
179 Altwegg-Boussac T, Chavez M, Mahon S, Charpier S. Excitability and responsiveness of rat barrel cortex neurons in the presence and absence of spontaneous synaptic activity in vivo. J Physiol 2014;592:3577-95. [PMID: 24732430 DOI: 10.1113/jphysiol.2013.270561] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
180 Bruno RM. Synchrony in sensation. Curr Opin Neurobiol 2011;21:701-8. [PMID: 21723114 DOI: 10.1016/j.conb.2011.06.003] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 6.2] [Reference Citation Analysis]
181 Lewis LD, Voigts J, Flores FJ, Schmitt LI, Wilson MA, Halassa MM, Brown EN. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife 2015;4:e08760. [PMID: 26460547 DOI: 10.7554/eLife.08760] [Cited by in Crossref: 87] [Cited by in F6Publishing: 49] [Article Influence: 12.4] [Reference Citation Analysis]
182 Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016;8:25. [PMID: 27616990 DOI: 10.3389/fnsyn.2016.00025] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 10.5] [Reference Citation Analysis]
183 [DOI: 10.1101/2020.03.26.009365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
184 Mesik L, Ma WP, Li LY, Ibrahim LA, Huang ZJ, Zhang LI, Tao HW. Functional response properties of VIP-expressing inhibitory neurons in mouse visual and auditory cortex. Front Neural Circuits 2015;9:22. [PMID: 26106301 DOI: 10.3389/fncir.2015.00022] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
185 Hays SA, Rennaker RL, Kilgard MP. Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res 2013;207:275-99. [PMID: 24309259 DOI: 10.1016/B978-0-444-63327-9.00010-2] [Cited by in Crossref: 95] [Cited by in F6Publishing: 61] [Article Influence: 11.9] [Reference Citation Analysis]
186 Reuveni I, Barkai E. Tune it in: mechanisms and computational significance of neuron-autonomous plasticity. Journal of Neurophysiology 2018;120:1781-95. [DOI: 10.1152/jn.00102.2018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
187 Jercog D, Roxin A, Barthó P, Luczak A, Compte A, de la Rocha J. UP-DOWN cortical dynamics reflect state transitions in a bistable network. Elife 2017;6:e22425. [PMID: 28826485 DOI: 10.7554/eLife.22425] [Cited by in Crossref: 60] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
188 Vyazovskiy VV, Harris KD. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 2013;14:443-51. [PMID: 23635871 DOI: 10.1038/nrn3494] [Cited by in Crossref: 166] [Cited by in F6Publishing: 133] [Article Influence: 18.4] [Reference Citation Analysis]
189 Goltstein PM, Montijn JS, Pennartz CM. Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse v1: reduced direction selectivity independent of increased correlations in cellular activity. PLoS One 2015;10:e0118277. [PMID: 25706867 DOI: 10.1371/journal.pone.0118277] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
190 Middleton JW, Omar C, Doiron B, Simons DJ. Neural correlation is stimulus modulated by feedforward inhibitory circuitry. J Neurosci 2012;32:506-18. [PMID: 22238086 DOI: 10.1523/JNEUROSCI.3474-11.2012] [Cited by in Crossref: 62] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
191 Stroh A, Adelsberger H, Groh A, Rühlmann C, Fischer S, Schierloh A, Deisseroth K, Konnerth A. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 2013;77:1136-50. [PMID: 23522048 DOI: 10.1016/j.neuron.2013.01.031] [Cited by in Crossref: 144] [Cited by in F6Publishing: 123] [Article Influence: 16.0] [Reference Citation Analysis]
192 Kanders K, Stoop N, Stoop R. Universality in the firing of minicolumnar-type neural networks. Chaos 2019;29:093109. [PMID: 31575124 DOI: 10.1063/1.5111867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
193 Constantinople CM, Bruno RM. Deep cortical layers are activated directly by thalamus. Science 2013;340:1591-4. [PMID: 23812718 DOI: 10.1126/science.1236425] [Cited by in Crossref: 277] [Cited by in F6Publishing: 233] [Article Influence: 30.8] [Reference Citation Analysis]
194 Poskanzer KE, Yuste R. Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci U S A 2016;113:E2675-84. [PMID: 27122314 DOI: 10.1073/pnas.1520759113] [Cited by in Crossref: 170] [Cited by in F6Publishing: 155] [Article Influence: 28.3] [Reference Citation Analysis]
195 Minamisawa G, Funayama K, Matsuki N, Ikegaya Y. Intact internal dynamics of the neocortex in acutely paralyzed mice. J Physiol Sci 2011;61:343-8. [DOI: 10.1007/s12576-011-0155-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
196 Enander JMD, Spanne A, Mazzoni A, Bengtsson F, Oddo CM, Jörntell H. Ubiquitous Neocortical Decoding of Tactile Input Patterns. Front Cell Neurosci 2019;13:140. [PMID: 31031596 DOI: 10.3389/fncel.2019.00140] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
197 Ross JA, Van Bockstaele EJ. The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Front Psychiatry 2020;11:601519. [PMID: 33584368 DOI: 10.3389/fpsyt.2020.601519] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
198 Mahon S, Charpier S. Bidirectional plasticity of intrinsic excitability controls sensory inputs efficiency in layer 5 barrel cortex neurons in vivo. J Neurosci 2012;32:11377-89. [PMID: 22895720 DOI: 10.1523/JNEUROSCI.0415-12.2012] [Cited by in Crossref: 41] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
199 Dunn M, Henke A, Clark S, Kovalyova Y, Kempadoo KA, Karpowicz RJ Jr, Kandel ER, Sulzer D, Sames D. Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo. Nat Commun 2018;9:2838. [PMID: 30026491 DOI: 10.1038/s41467-018-05075-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
200 Williams MS, Altwegg-Boussac T, Chavez M, Lecas S, Mahon S, Charpier S. Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model. J Physiol 2016;594:6733-51. [PMID: 27311433 DOI: 10.1113/JP272162] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
201 de Lafuente V. Memory Consolidation during Sleep Might be Regulated by the Locus Coeruleus. Neuroscience 2021;453:266-7. [PMID: 33419513 DOI: 10.1016/j.neuroscience.2020.11.033] [Reference Citation Analysis]
202 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
203 Glennon E, Carcea I, Martins ARO, Multani J, Shehu I, Svirsky MA, Froemke RC. Locus coeruleus activation accelerates perceptual learning. Brain Res 2019;1709:39-49. [PMID: 29859972 DOI: 10.1016/j.brainres.2018.05.048] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
204 Yang H, Kwon SE, Severson KS, O'Connor DH. Origins of choice-related activity in mouse somatosensory cortex. Nat Neurosci 2016;19:127-34. [PMID: 26642088 DOI: 10.1038/nn.4183] [Cited by in Crossref: 107] [Cited by in F6Publishing: 82] [Article Influence: 15.3] [Reference Citation Analysis]
205 Battaglia D, Witt A, Wolf F, Geisel T. Dynamic effective connectivity of inter-areal brain circuits. PLoS Comput Biol 2012;8:e1002438. [PMID: 22457614 DOI: 10.1371/journal.pcbi.1002438] [Cited by in Crossref: 95] [Cited by in F6Publishing: 72] [Article Influence: 9.5] [Reference Citation Analysis]
206 Crunelli V, David F, Lőrincz ML, Hughes SW. The thalamocortical network as a single slow wave-generating unit. Current Opinion in Neurobiology 2015;31:72-80. [DOI: 10.1016/j.conb.2014.09.001] [Cited by in Crossref: 98] [Cited by in F6Publishing: 85] [Article Influence: 14.0] [Reference Citation Analysis]
207 Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013;23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
208 Moore JJ, Ravassard PM, Ho D, Acharya L, Kees AL, Vuong C, Mehta MR. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science 2017;355:eaaj1497. [DOI: 10.1126/science.aaj1497] [Cited by in Crossref: 59] [Cited by in F6Publishing: 36] [Article Influence: 11.8] [Reference Citation Analysis]
209 Liebig L, Grasshoff C, Hentschke H. [Intern(euron)al affairs : The role of specific neocortical interneuron classes in the interaction between acetylcholine and GABAergic anesthetics]. Anaesthesist 2016;65:609-14. [PMID: 27380048 DOI: 10.1007/s00101-016-0197-9] [Reference Citation Analysis]
210 Ayala YA, Pérez-González D, Duque D, Palmer AR, Malmierca MS. Extracellular Recording of Neuronal Activity Combined with Microiontophoretic Application of Neuroactive Substances in Awake Mice. J Vis Exp 2016. [PMID: 27286308 DOI: 10.3791/53914] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
211 Ding D, Wang X, Li Q, Li L, Wu J. Research on the Glial-Lymphatic System and Its Relationship With Alzheimer's Disease. Front Neurosci 2021;15:605586. [PMID: 34220413 DOI: 10.3389/fnins.2021.605586] [Reference Citation Analysis]
212 Matsuo K, Ban R, Hama Y, Yuzuriha S. Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism. PLoS One 2015;10:e0134659. [PMID: 26244675 DOI: 10.1371/journal.pone.0134659] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
213 Chen YP, Lin CP, Hsu YC, Hung CP. Network Anisotropy Trumps Noise for Efficient Object Coding in Macaque Inferior Temporal Cortex. J Neurosci 2015;35:9889-99. [PMID: 26156990 DOI: 10.1523/JNEUROSCI.4595-14.2015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
214 Jaiswal S, Tsai SY, Juan CH, Muggleton NG, Liang WK. Low delta and high alpha power are associated with better conflict control and working memory in high mindfulness, low anxiety individuals. Soc Cogn Affect Neurosci 2019;14:645-55. [PMID: 31119291 DOI: 10.1093/scan/nsz038] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
215 Enander JM, Jörntell H. Somatosensory Cortical Neurons Decode Tactile Input Patterns and Location from Both Dominant and Non-dominant Digits. Cell Reports 2019;26:3551-3560.e4. [DOI: 10.1016/j.celrep.2019.02.099] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
216 Luczak A, Bartho P, Harris KD. Gating of sensory input by spontaneous cortical activity. J Neurosci 2013;33:1684-95. [PMID: 23345241 DOI: 10.1523/JNEUROSCI.2928-12.2013] [Cited by in Crossref: 106] [Cited by in F6Publishing: 69] [Article Influence: 11.8] [Reference Citation Analysis]
217 Labarrera C, Deitcher Y, Dudai A, Weiner B, Kaduri Amichai A, Zylbermann N, London M. Adrenergic Modulation Regulates the Dendritic Excitability of Layer 5 Pyramidal Neurons In Vivo. Cell Rep 2018;23:1034-44. [PMID: 29694883 DOI: 10.1016/j.celrep.2018.03.103] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
218 Pais-Vieira M, Kunicki C, Peres A, Sousa N. Ceftriaxone modulates the acute corticosterone effects in local field potentials in the primary somatosensory cortex of anesthetized mice. Sci Rep 2019;9:20289. [PMID: 31889134 DOI: 10.1038/s41598-019-56827-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
219 Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK. The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 2012;32:1395-407. [PMID: 22279224 DOI: 10.1523/JNEUROSCI.3985-11.2012] [Cited by in Crossref: 219] [Cited by in F6Publishing: 143] [Article Influence: 21.9] [Reference Citation Analysis]
220 Mease RA, Sumser A, Sakmann B, Groh A. Corticothalamic Spike Transfer via the L5B-POm Pathway in vivo. Cereb Cortex 2016;26:3461-75. [PMID: 27178196 DOI: 10.1093/cercor/bhw123] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
221 Timofeev I, Chauvette S. Neuronal Activity During the Sleep-Wake Cycle. Handbook of Sleep Research. Elsevier; 2019. pp. 3-17. [DOI: 10.1016/b978-0-12-813743-7.00001-3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
222 Aponte DA, Handy G, Kline AM, Tsukano H, Doiron B, Kato HK. Recurrent network dynamics shape direction selectivity in primary auditory cortex. Nat Commun 2021;12:314. [PMID: 33436635 DOI: 10.1038/s41467-020-20590-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
223 Voglewede RL, Vandemark KM, Davidson AM, DeWitt AR, Heffler MD, Trimmer EH, Mostany R. Reduced sensory-evoked structural plasticity in the aging barrel cortex. Neurobiol Aging 2019;81:222-33. [PMID: 31323444 DOI: 10.1016/j.neurobiolaging.2019.06.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
224 Suzuki M, Larkum ME. General Anesthesia Decouples Cortical Pyramidal Neurons. Cell 2020;180:666-676.e13. [PMID: 32084339 DOI: 10.1016/j.cell.2020.01.024] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 26.0] [Reference Citation Analysis]
225 Arroyo S, Bennett C, Hestrin S. Correlation of Synaptic Inputs in the Visual Cortex of Awake, Behaving Mice. Neuron 2018;99:1289-1301.e2. [PMID: 30174117 DOI: 10.1016/j.neuron.2018.08.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
226 Ghasemi M, Mehranfard N. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology 2018;137:297-308. [DOI: 10.1016/j.neuropharm.2018.05.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
227 Totah NK, Kim Y, Moghaddam B. Distinct prestimulus and poststimulus activation of VTA neurons correlates with stimulus detection. J Neurophysiol 2013;110:75-85. [PMID: 23554430 DOI: 10.1152/jn.00784.2012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
228 Ramaswamy S, Muller EB. Cell-type specific modulation of neocortical UP and DOWN states. Front Cell Neurosci 2015;9:370. [PMID: 26441541 DOI: 10.3389/fncel.2015.00370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
229 Quiquempoix M, Fayad SL, Boutourlinsky K, Leresche N, Lambert RC, Bessaih T. Layer 2/3 Pyramidal Neurons Control the Gain of Cortical Output. Cell Rep 2018;24:2799-2807.e4. [PMID: 30208307 DOI: 10.1016/j.celrep.2018.08.038] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
230 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
231 D'Andola M, Rebollo B, Casali AG, Weinert JF, Pigorini A, Villa R, Massimini M, Sanchez-Vives MV. Bistability, Causality, and Complexity in Cortical Networks: An In Vitro Perturbational Study. Cereb Cortex 2018;28:2233-42. [PMID: 28525544 DOI: 10.1093/cercor/bhx122] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
232 Castro-Alamancos MA, Gulati T. Neuromodulators produce distinct activated states in neocortex. J Neurosci 2014;34:12353-67. [PMID: 25209276 DOI: 10.1523/JNEUROSCI.1858-14.2014] [Cited by in Crossref: 40] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
233 Fisher SP, Cui N, McKillop LE, Gemignani J, Bannerman DM, Oliver PL, Peirson SN, Vyazovskiy VV. Stereotypic wheel running decreases cortical activity in mice. Nat Commun 2016;7:13138. [PMID: 27748455 DOI: 10.1038/ncomms13138] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
234 Liu X, Kuzum D. Hippocampal-Cortical Memory Trace Transfer and Reactivation Through Cell-Specific Stimulus and Spontaneous Background Noise. Front Comput Neurosci 2019;13:67. [PMID: 31680922 DOI: 10.3389/fncom.2019.00067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
235 Feldmeyer D. Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 2012;6:24. [PMID: 22798946 DOI: 10.3389/fnana.2012.00024] [Cited by in Crossref: 176] [Cited by in F6Publishing: 162] [Article Influence: 17.6] [Reference Citation Analysis]
236 Kim JH, Jung AH, Jeong D, Choi I, Kim K, Shin S, Kim SJ, Lee SH. Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary Sensory Cortices. J Neurosci 2016;36:5314-27. [PMID: 27170128 DOI: 10.1523/JNEUROSCI.4333-15.2016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
237 Xie Y, Chen S, Wu Y, Murphy TH. Prolonged deficits in parvalbumin neuron stimulation-evoked network activity despite recovery of dendritic structure and excitability in the somatosensory cortex following global ischemia in mice. J Neurosci 2014;34:14890-900. [PMID: 25378156 DOI: 10.1523/JNEUROSCI.1775-14.2014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
238 Song C, Piscopo DM, Niell CM, Knöpfel T. Cortical signatures of wakeful somatosensory processing. Sci Rep 2018;8:11977. [PMID: 30097603 DOI: 10.1038/s41598-018-30422-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
239 Hengen KB, Torrado Pacheco A, McGregor JN, Van Hooser SD, Turrigiano GG. Neuronal Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake. Cell 2016;165:180-91. [PMID: 26997481 DOI: 10.1016/j.cell.2016.01.046] [Cited by in Crossref: 158] [Cited by in F6Publishing: 123] [Article Influence: 26.3] [Reference Citation Analysis]
240 Yu S, Yang H, Nakahara H, Santos GS, Nikolić D, Plenz D. Higher-order interactions characterized in cortical activity. J Neurosci 2011;31:17514-26. [PMID: 22131413 DOI: 10.1523/JNEUROSCI.3127-11.2011] [Cited by in Crossref: 121] [Cited by in F6Publishing: 66] [Article Influence: 12.1] [Reference Citation Analysis]
241 [DOI: 10.1101/832998] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
242 Bostanciklioğlu M. Unexpected awakenings in severe dementia from case reports to laboratory. Alzheimers Dement 2021;17:125-36. [PMID: 33064369 DOI: 10.1002/alz.12162] [Reference Citation Analysis]
243 Collins L, Boddington L, Steffan PJ, Mccormick D. Vagus nerve stimulation induces widespread cortical and behavioral activation. Current Biology 2021;31:2088-2098.e3. [DOI: 10.1016/j.cub.2021.02.049] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
244 Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018;12:51. [PMID: 30042662 DOI: 10.3389/fncir.2018.00051] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
245 Chauvette S, Crochet S, Volgushev M, Timofeev I. Properties of slow oscillation during slow-wave sleep and anesthesia in cats. J Neurosci 2011;31:14998-5008. [PMID: 22016533 DOI: 10.1523/JNEUROSCI.2339-11.2011] [Cited by in Crossref: 126] [Cited by in F6Publishing: 81] [Article Influence: 11.5] [Reference Citation Analysis]
246 Kaufman M, Corner MA, Ziv NE. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling. PLoS One 2012;7:e40980. [PMID: 22911726 DOI: 10.1371/journal.pone.0040980] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
247 Tang L, Higley MJ. Layer 5 Circuits in V1 Differentially Control Visuomotor Behavior. Neuron 2020;105:346-354.e5. [PMID: 31757603 DOI: 10.1016/j.neuron.2019.10.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
248 Sakata S. State-dependent and cell type-specific temporal processing in auditory thalamocortical circuit. Sci Rep 2016;6:18873. [PMID: 26728584 DOI: 10.1038/srep18873] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
249 Norrlid J, Enander JMD, Mogensen H, Jörntell H. Multi-structure Cortical States Deduced From Intracellular Representations of Fixed Tactile Input Patterns. Front Cell Neurosci 2021;15:677568. [PMID: 34194301 DOI: 10.3389/fncel.2021.677568] [Reference Citation Analysis]
250 Wissig SC, Kohn A. The influence of surround suppression on adaptation effects in primary visual cortex. J Neurophysiol 2012;107:3370-84. [PMID: 22423001 DOI: 10.1152/jn.00739.2011] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 5.8] [Reference Citation Analysis]
251 Poulet JF, Fernandez LM, Crochet S, Petersen CC. Thalamic control of cortical states. Nat Neurosci 2012;15:370-2. [PMID: 22267163 DOI: 10.1038/nn.3035] [Cited by in Crossref: 190] [Cited by in F6Publishing: 182] [Article Influence: 19.0] [Reference Citation Analysis]
252 Zagha E, Casale AE, Sachdev RN, McGinley MJ, McCormick DA. Motor cortex feedback influences sensory processing by modulating network state. Neuron 2013;79:567-78. [PMID: 23850595 DOI: 10.1016/j.neuron.2013.06.008] [Cited by in Crossref: 165] [Cited by in F6Publishing: 148] [Article Influence: 18.3] [Reference Citation Analysis]
253 Colonnese M, Khazipov R. Spontaneous activity in developing sensory circuits: Implications for resting state fMRI. NeuroImage 2012;62:2212-21. [DOI: 10.1016/j.neuroimage.2012.02.046] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 5.8] [Reference Citation Analysis]
254 Carter ME, de Lecea L, Adamantidis A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front Behav Neurosci 2013;7:43. [PMID: 23730276 DOI: 10.3389/fnbeh.2013.00043] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
255 Barth AL, Poulet JF. Experimental evidence for sparse firing in the neocortex. Trends Neurosci 2012;35:345-55. [PMID: 22579264 DOI: 10.1016/j.tins.2012.03.008] [Cited by in Crossref: 201] [Cited by in F6Publishing: 163] [Article Influence: 20.1] [Reference Citation Analysis]
256 Durán E, Yang M, Neves R, Logothetis NK, Eschenko O. Modulation of Prefrontal Cortex Slow Oscillations by Phasic Activation of the Locus Coeruleus. Neuroscience 2021;453:268-79. [PMID: 33419514 DOI: 10.1016/j.neuroscience.2020.11.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
257 Northeast RC, Huang Y, McKillop LE, Bechtold DA, Peirson SN, Piggins HD, Vyazovskiy VV. Sleep homeostasis during daytime food entrainment in mice. Sleep 2019;42:zsz157. [PMID: 31329251 DOI: 10.1093/sleep/zsz157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
258 Suzuki N, Tantirigama MLS, Aung KP, Huang HHY, Bekkers JM. Fast and slow feedforward inhibitory circuits for cortical odor processing. Elife 2022;11:e73406. [PMID: 35297763 DOI: 10.7554/eLife.73406] [Reference Citation Analysis]
259 Valero M, English DF. Head-mounted approaches for targeting single-cells in freely moving animals. Journal of Neuroscience Methods 2019;326:108397. [DOI: 10.1016/j.jneumeth.2019.108397] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
260 Altwegg-Boussac T, Mahon S, Chavez M, Charpier S, Schramm AE. Induction of an Isoelectric Brain State to Investigate the Impact of Endogenous Synaptic Activity on Neuronal Excitability In Vivo. J Vis Exp 2016;:e53576. [PMID: 27078163 DOI: 10.3791/53576] [Reference Citation Analysis]
261 Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2018;97:769-85. [PMID: 29470969 DOI: 10.1016/j.neuron.2018.01.008] [Cited by in Crossref: 127] [Cited by in F6Publishing: 84] [Article Influence: 42.3] [Reference Citation Analysis]
262 Fukuda M, Vazquez AL, Zong X, Kim SG. Effects of the α₂-adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. Eur J Neurosci 2013;37:80-95. [PMID: 23106361 DOI: 10.1111/ejn.12024] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 8.3] [Reference Citation Analysis]
263 Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020;14:22. [PMID: 32457582 DOI: 10.3389/fnsys.2020.00022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
264 Pluta SR, Telian GI, Naka A, Adesnik H. Superficial Layers Suppress the Deep Layers to Fine-tune Cortical Coding. J Neurosci 2019;39:2052-64. [PMID: 30651326 DOI: 10.1523/JNEUROSCI.1459-18.2018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
265 Mogensen H, Norrlid J, Enander JMD, Wahlbom A, Jörntell H. Absence of Repetitive Correlation Patterns Between Pairs of Adjacent Neocortical Neurons in vivo. Front Neural Circuits 2019;13:48. [PMID: 31379516 DOI: 10.3389/fncir.2019.00048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
266 Oran Y, Katz Y, Sokoletsky M, Malina KC, Lampl I. Reduction of corpus callosum activity during whisking leads to interhemispheric decorrelation. Nat Commun 2021;12:4095. [PMID: 34215734 DOI: 10.1038/s41467-021-24310-6] [Reference Citation Analysis]
267 Chockanathan U, Crosier EJW, Waddle S, Lyman E, Gerkin RC, Padmanabhan K. Changes in pairwise correlations during running reshape global network state in the main olfactory bulb. J Neurophysiol 2021;125:1612-23. [PMID: 33656931 DOI: 10.1152/jn.00464.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
268 Treviño M, Medina-Coss Y León R, Lezama E. Adrenergic Modulation of Visually-Guided Behavior. Front Synaptic Neurosci 2019;11:9. [PMID: 30949042 DOI: 10.3389/fnsyn.2019.00009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]