BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P, Mignot E. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 2010;68:87-98. [PMID: 20920793 DOI: 10.1016/j.neuron.2010.09.006] [Cited by in Crossref: 119] [Cited by in F6Publishing: 118] [Article Influence: 9.9] [Reference Citation Analysis]
Number Citing Articles
1 Dabbish NS, Raizen DM. GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans. J Neurosci 2011;31:15932-43. [PMID: 22049436 DOI: 10.1523/JNEUROSCI.0742-11.2011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
2 Dietrich MO, Horvath TL. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci 2013;36:65-73. [PMID: 23318157 DOI: 10.1016/j.tins.2012.12.005] [Cited by in Crossref: 136] [Cited by in F6Publishing: 129] [Article Influence: 15.1] [Reference Citation Analysis]
3 Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017;11:354. [PMID: 28694769 DOI: 10.3389/fnins.2017.00354] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 12.2] [Reference Citation Analysis]
4 Ly JQM, Gaggioni G, Chellappa SL, Papachilleos S, Brzozowski A, Borsu C, Rosanova M, Sarasso S, Middleton B, Luxen A, Archer SN, Phillips C, Dijk DJ, Maquet P, Massimini M, Vandewalle G. Circadian regulation of human cortical excitability. Nat Commun 2016;7:11828. [PMID: 27339884 DOI: 10.1038/ncomms11828] [Cited by in Crossref: 85] [Cited by in F6Publishing: 71] [Article Influence: 14.2] [Reference Citation Analysis]
5 Carreras C, Ordóñez V, Zane L, Kruschel C, Nasto I, Macpherson E, Pascual M. Population genomics of an endemic Mediterranean fish: differentiation by fine scale dispersal and adaptation. Sci Rep 2017;7:43417. [PMID: 28262802 DOI: 10.1038/srep43417] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 9.4] [Reference Citation Analysis]
6 Salehinejad MA, Azarkolah A, Ghanavati E, Nitsche MA. Circadian disturbances, sleep difficulties and the COVID-19 pandemic. Sleep Med 2021:S1389-9457(21)00393-2. [PMID: 34334305 DOI: 10.1016/j.sleep.2021.07.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kim CK, Miri A, Leung LC, Berndt A, Mourrain P, Tank DW, Burdine RD. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Front Neural Circuits 2014;8:138. [PMID: 25505384 DOI: 10.3389/fncir.2014.00138] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
8 Sivachenko A, Li Y, Abruzzi KC, Rosbash M. The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Neuron 2013;79:281-92. [PMID: 23889933 DOI: 10.1016/j.neuron.2013.05.015] [Cited by in Crossref: 63] [Cited by in F6Publishing: 52] [Article Influence: 7.0] [Reference Citation Analysis]
9 Leung LC, Wang GX, Madelaine R, Skariah G, Kawakami K, Deisseroth K, Urban AE, Mourrain P. Neural signatures of sleep in zebrafish. Nature 2019;571:198-204. [PMID: 31292557 DOI: 10.1038/s41586-019-1336-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 13.3] [Reference Citation Analysis]
10 Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation. PLoS Genet 2014;10:e1004615. [PMID: 25255244 DOI: 10.1371/journal.pgen.1004615] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
11 Krzeptowski W, Hess G, Pyza E. Circadian Plasticity in the Brain of Insects and Rodents. Front Neural Circuits 2018;12:32. [PMID: 29770112 DOI: 10.3389/fncir.2018.00032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
12 Herrero A, Duhart JM, Ceriani MF. Neuronal and Glial Clocks Underlying Structural Remodeling of Pacemaker Neurons in Drosophila. Front Physiol 2017;8:918. [PMID: 29184510 DOI: 10.3389/fphys.2017.00918] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
13 Mack KL, Jaggard JB, Persons JL, Roback EY, Passow CN, Stanhope BA, Ferrufino E, Tsuchiya D, Smith SE, Slaughter BD, Kowalko J, Rohner N, Keene AC, McGaugh SE. Repeated evolution of circadian clock dysregulation in cavefish populations. PLoS Genet 2021;17:e1009642. [PMID: 34252077 DOI: 10.1371/journal.pgen.1009642] [Reference Citation Analysis]
14 Raizen DM, Zimmerman JE. Non-mammalian genetic model systems in sleep research. Sleep Med Clin 2011;6:131-9. [PMID: 21731528 DOI: 10.1016/j.jsmc.2011.04.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
15 Elbaz I, Lerer-Goldshtein T, Okamoto H, Appelbaum L. Reduced synaptic density and deficient locomotor response in neuronal activity-regulated pentraxin 2a mutant zebrafish. FASEB J 2015;29:1220-34. [PMID: 25466900 DOI: 10.1096/fj.14-258350] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
16 Elbaz I, Zada D, Tovin A, Braun T, Lerer-Goldshtein T, Wang G, Mourrain P, Appelbaum L. Sleep-Dependent Structural Synaptic Plasticity of Inhibitory Synapses in the Dendrites of Hypocretin/Orexin Neurons. Mol Neurobiol 2017;54:6581-97. [PMID: 27734337 DOI: 10.1007/s12035-016-0175-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
17 Frenkel L, Fernanda Ceriani M. Circadian Plasticity: From Structure to Behavior. Recent advances in the use of Drosophila in neurobiology and neurodegeneration. Elsevier; 2011. pp. 107-38. [DOI: 10.1016/b978-0-12-387003-2.00005-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
18 Aho V, Vainikka M, Puttonen HAJ, Ikonen HMK, Salminen T, Panula P, Porkka-Heiskanen T, Wigren HK. Homeostatic response to sleep/rest deprivation by constant water flow in larval zebrafish in both dark and light conditions. J Sleep Res 2017;26:394-400. [PMID: 28251715 DOI: 10.1111/jsr.12508] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
19 Hoskins LJ, Volkoff H. The comparative endocrinology of feeding in fish: Insights and challenges. General and Comparative Endocrinology 2012;176:327-35. [DOI: 10.1016/j.ygcen.2011.12.025] [Cited by in Crossref: 67] [Cited by in F6Publishing: 54] [Article Influence: 6.7] [Reference Citation Analysis]
20 Leung LC, Wang GX, Mourrain P. Imaging zebrafish neural circuitry from whole brain to synapse. Front Neural Circuits 2013;7:76. [PMID: 23630470 DOI: 10.3389/fncir.2013.00076] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.2] [Reference Citation Analysis]
21 Akladious A, Azzam S, Hu Y, Feng P. Bmal1 knockdown suppresses wake and increases immobility without altering orexin A, corticotrophin-releasing hormone, or glutamate decarboxylase. CNS Neurosci Ther 2018;24:549-63. [PMID: 29446232 DOI: 10.1111/cns.12815] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
23 Verri T, Terova G, Romano A, Barca A, Pisani P, Storelli C, Saroglia M. The SoLute Carrier (SLC) Family Series in Teleost Fish. In: Saroglia M, Liu ZJ, editors. Functional Genomics in Aquaculture. Oxford: Wiley-Blackwell; 2012. pp. 219-320. [DOI: 10.1002/9781118350041.ch10] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 2.1] [Reference Citation Analysis]
24 Maret S, Faraguna U, Nelson AB, Cirelli C, Tononi G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci 2011;14:1418-20. [PMID: 21983682 DOI: 10.1038/nn.2934] [Cited by in Crossref: 175] [Cited by in F6Publishing: 155] [Article Influence: 15.9] [Reference Citation Analysis]
25 Han J, Ji C, Guo Y, Yan R, Hong T, Dou Y, An Y, Tao S, Qin F, Nie J, Ji C, Wang H, Tong J, Xiao W, Zhang J. Mechanisms underlying melatonin-mediated prevention of fenvalerate-induced behavioral and oxidative toxicity in zebrafish. J Toxicol Environ Health A 2017;80:1331-41. [PMID: 29144200 DOI: 10.1080/15287394.2017.1384167] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
26 Donlea JM. Neuronal and molecular mechanisms of sleep homeostasis. Current Opinion in Insect Science 2017;24:51-7. [DOI: 10.1016/j.cois.2017.09.008] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 5.6] [Reference Citation Analysis]
27 Ruiz S, Ferreiro MJ, Menhert KI, Casanova G, Olivera A, Cantera R. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals. PLoS One 2013;8:e67161. [PMID: 23840613 DOI: 10.1371/journal.pone.0067161] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
28 Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020;118:134-62. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
29 Bosler O, Girardet C, Franc JL, Becquet D, François-Bellan AM. Structural plasticity of the circadian timing system. An overview from flies to mammals. Front Neuroendocrinol 2015;38:50-64. [PMID: 25703789 DOI: 10.1016/j.yfrne.2015.02.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
30 Cowan M, Azpeleta C, López-olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017;187:1057-89. [DOI: 10.1007/s00360-017-1094-5] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
31 Phillips DJ, Savenkova MI, Karatsoreos IN. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain Behav Immun 2015;47:14-23. [PMID: 25542734 DOI: 10.1016/j.bbi.2014.12.008] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 4.4] [Reference Citation Analysis]
32 Bushey D, Tononi G, Cirelli C. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 2011;332:1576-81. [PMID: 21700878 DOI: 10.1126/science.1202839] [Cited by in Crossref: 230] [Cited by in F6Publishing: 200] [Article Influence: 20.9] [Reference Citation Analysis]
33 Muraro NI, Pírez N, Ceriani MF. The circadian system: plasticity at many levels. Neuroscience 2013;247:280-93. [PMID: 23727010 DOI: 10.1016/j.neuroscience.2013.05.036] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
34 Kayser MS, Biron D. Sleep and Development in Genetically Tractable Model Organisms. Genetics 2016;203:21-33. [PMID: 27183564 DOI: 10.1534/genetics.116.189589] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 9.4] [Reference Citation Analysis]
35 Vatine GD, Zada D, Lerer-Goldshtein T, Tovin A, Malkinson G, Yaniv K, Appelbaum L. Zebrafish as a model for monocarboxyl transporter 8-deficiency. J Biol Chem 2013;288:169-80. [PMID: 23161551 DOI: 10.1074/jbc.M112.413831] [Cited by in Crossref: 52] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
36 Areal CC, Warby SC, Mongrain V. Sleep loss and structural plasticity. Current Opinion in Neurobiology 2017;44:1-7. [DOI: 10.1016/j.conb.2016.12.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
37 Wang H, Yang Z, Li X, Huang D, Yu S, He J, Li Y, Yan J. Single-cell in vivo imaging of cellular circadian oscillators in zebrafish. PLoS Biol 2020;18:e3000435. [PMID: 32168317 DOI: 10.1371/journal.pbio.3000435] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
38 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
39 Elbaz I, Foulkes NS, Gothilf Y, Appelbaum L. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front Neural Circuits 2013;7:9. [PMID: 23378829 DOI: 10.3389/fncir.2013.00009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
40 Chiu CN, Prober DA. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front Neural Circuits 2013;7:58. [PMID: 23576957 DOI: 10.3389/fncir.2013.00058] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
41 Snider KH, Sullivan KA, Obrietan K. Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast 2018;2018:7292540. [PMID: 29593785 DOI: 10.1155/2018/7292540] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 10.3] [Reference Citation Analysis]
42 Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ. Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 2011;332:1571-6. [PMID: 21700877 DOI: 10.1126/science.1202249] [Cited by in Crossref: 234] [Cited by in F6Publishing: 189] [Article Influence: 21.3] [Reference Citation Analysis]
43 Swanson A, Wolf T, Sitzmann A, Willette AA. Neuroinflammation in Alzheimer's disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behav Brain Res 2018;347:49-56. [PMID: 29462653 DOI: 10.1016/j.bbr.2018.02.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
44 Herrero A, Yoshii T, Ispizua JI, Colque C, Veenstra JA, Muraro NI, Ceriani MF. Coupling Neuropeptide Levels to Structural Plasticity in Drosophila Clock Neurons. Curr Biol 2020;30:3154-3166.e4. [PMID: 32619484 DOI: 10.1016/j.cub.2020.06.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
45 Leung LC, Mourrain P. Sleep: Short Sleepers Should Keep Count of Their Hypocretin Neurons. Curr Biol 2018;28:R558-60. [PMID: 29738730 DOI: 10.1016/j.cub.2018.03.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
46 Gao XB, Hermes G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci 2015;9:142. [PMID: 26539086 DOI: 10.3389/fnsys.2015.00142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
47 Gao XB. Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin. Vitam Horm 2012;89:35-59. [PMID: 22640607 DOI: 10.1016/B978-0-12-394623-2.00003-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
48 Jordán-Álvarez S, Santana E, Casas-Tintó S, Acebes Á, Ferrús A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One 2017;12:e0184238. [PMID: 28892511 DOI: 10.1371/journal.pone.0184238] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
49 Mansilla A, Jordán-álvarez S, Santana E, Jarabo P, Casas-tintó S, Ferrús A. Molecular mechanisms that change synapse number. Journal of Neurogenetics 2018;32:155-70. [DOI: 10.1080/01677063.2018.1506781] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
50 Cirelli C. Sleep, synaptic homeostasis and neuronal firing rates. Curr Opin Neurobiol 2017;44:72-9. [PMID: 28399462 DOI: 10.1016/j.conb.2017.03.016] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
51 Sundvik M, Panula P. Organization of the histaminergic system in adult zebrafish ( Danio rerio ) brain: Neuron number, location, and cotransmitters. J Comp Neurol 2012;520:3827-45. [DOI: 10.1002/cne.23126] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
52 Krishnan HC, Lyons LC. Synchrony and desynchrony in circadian clocks: impacts on learning and memory. Learn Mem 2015;22:426-37. [PMID: 26286653 DOI: 10.1101/lm.038877.115] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 7.1] [Reference Citation Analysis]
53 Benani A, Hryhorczuk C, Gouazé A, Fioramonti X, Brenachot X, Guissard C, Krezymon A, Duparc T, Colom A, Nédélec E, Rigault C, Lemoine A, Gascuel J, Gerardy-Schahn R, Valet P, Knauf C, Lorsignol A, Pénicaud L. Food intake adaptation to dietary fat involves PSA-dependent rewiring of the arcuate melanocortin system in mice. J Neurosci 2012;32:11970-9. [PMID: 22933782 DOI: 10.1523/JNEUROSCI.0624-12.2012] [Cited by in Crossref: 44] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
54 Yelin-Bekerman L, Elbaz I, Diber A, Dahary D, Gibbs-Bar L, Alon S, Lerer-Goldshtein T, Appelbaum L. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. Elife 2015;4:e08638. [PMID: 26426478 DOI: 10.7554/eLife.08638] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
55 Albrecht U. Circadian rhythms and sleep--the metabolic connection. Pflugers Arch 2012;463:23-30. [PMID: 21710201 DOI: 10.1007/s00424-011-0986-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
56 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
57 Yang G, Gan WB. Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex. Dev Neurobiol 2012;72:1391-8. [PMID: 22058046 DOI: 10.1002/dneu.20996] [Cited by in Crossref: 70] [Cited by in F6Publishing: 64] [Article Influence: 7.0] [Reference Citation Analysis]
58 Wang G, Grone B, Colas D, Appelbaum L, Mourrain P. Synaptic plasticity in sleep: learning, homeostasis and disease. Trends Neurosci 2011;34:452-63. [PMID: 21840068 DOI: 10.1016/j.tins.2011.07.005] [Cited by in Crossref: 94] [Cited by in F6Publishing: 86] [Article Influence: 8.5] [Reference Citation Analysis]
59 Bellesi M, de Vivo L. Structural synaptic plasticity across sleep and wake. Curr Opin Physiol 2020;15:74-81. [PMID: 32642626 DOI: 10.1016/j.cophys.2019.12.007] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Matsuki T, Takasu M, Hirose Y, Murakoshi N, Sinton CM, Motoike T, Yanagisawa M. GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice. Neuroscience 2015;284:217-24. [PMID: 25286384 DOI: 10.1016/j.neuroscience.2014.09.063] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
61 Shan L, Dauvilliers Y, Siegel JM. Interactions of the histamine and hypocretin systems in CNS disorders. Nat Rev Neurol 2015;11:401-13. [PMID: 26100750 DOI: 10.1038/nrneurol.2015.99] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 8.0] [Reference Citation Analysis]
62 Zhong Y, Ye Q, Chen C, Wang M, Wang H. Ezh2 promotes clock function and hematopoiesis independent of histone methyltransferase activity in zebrafish. Nucleic Acids Res 2018;46:3382-99. [PMID: 29447387 DOI: 10.1093/nar/gky101] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
63 Levitas-Djerbi T, Appelbaum L. Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 2017;44:89-93. [PMID: 28414966 DOI: 10.1016/j.conb.2017.02.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
64 Sorribes A, Thornorsteinsson H, Arnardóttir H, Jóhannesdóttir IÞ, Sigurgeirsson B, de Polavieja GG, Karlsson KÆ. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans. Front Neural Circuits 2013;7:178. [PMID: 24312015 DOI: 10.3389/fncir.2013.00178] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
65 Donjacour CEHM, Kalsbeek A, Overeem S, Lammers GJ, Pévet P, Bothorel B, Pijl H, Aziz NA. Altered Circadian Rhythm of Melatonin Concentrations in Hypocretin-Deficient Men. Chronobiology International 2012;29:356-62. [DOI: 10.3109/07420528.2012.655869] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
66 Wang F, Ren D, Liang X, Ke S, Zhang B, Hu B, Song X, Wang X. A long noncoding RNA cluster-based genomic locus maintains proper development and visual function. Nucleic Acids Res 2019;47:6315-29. [PMID: 31127312 DOI: 10.1093/nar/gkz444] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
67 Ren D, Li Y, Hu B, Wang H, Hu B. Melatonin regulates the rhythmic migration of neutrophils in live zebrafish. J Pineal Res 2015;58:452-60. [DOI: 10.1111/jpi.12230] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
68 Chellappa SL, Gaggioni G, Ly JQ, Papachilleos S, Borsu C, Brzozowski A, Rosanova M, Sarasso S, Luxen A, Middleton B, Archer SN, Dijk DJ, Massimini M, Maquet P, Phillips C, Moran RJ, Vandewalle G. Circadian dynamics in measures of cortical excitation and inhibition balance. Sci Rep 2016;6:33661. [PMID: 27651114 DOI: 10.1038/srep33661] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
69 Elbaz I, Levitas-Djerbi T, Appelbaum L. The Hypocretin/Orexin Neuronal Networks in Zebrafish. Curr Top Behav Neurosci 2017;33:75-92. [PMID: 28012092 DOI: 10.1007/7854_2016_59] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
70 Jaggard JB, Wang GX, Mourrain P. Non-REM and REM/paradoxical sleep dynamics across phylogeny. Curr Opin Neurobiol 2021;71:44-51. [PMID: 34583217 DOI: 10.1016/j.conb.2021.08.004] [Reference Citation Analysis]
71 Shainer I, Buchshtab A, Hawkins TA, Wilson SW, Cone RD, Gothilf Y. Novel hypophysiotropic AgRP2 neurons and pineal cells revealed by BAC transgenesis in zebrafish. Sci Rep 2017;7:44777. [PMID: 28317906 DOI: 10.1038/srep44777] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
72 Pan YA, Choy M, Prober DA, Schier AF. Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons. Development 2012;139:591-600. [PMID: 22190641 DOI: 10.1242/dev.076588] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
73 deCarvalho TN, Subedi A, Rock J, Harfe BD, Thisse C, Thisse B, Halpern ME, Hong E. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish. Genesis 2014;52:636-55. [PMID: 24753112 DOI: 10.1002/dvg.22785] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
74 Vyazovskiy VV, Faraguna U. Sleep and synaptic homeostasis. Curr Top Behav Neurosci 2015;25:91-121. [PMID: 24844680 DOI: 10.1007/7854_2014_301] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
75 Burt J, Alberto CO, Parsons MP, Hirasawa M. Local network regulation of orexin neurons in the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 2011;301:R572-80. [PMID: 21697524 DOI: 10.1152/ajpregu.00674.2010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
76 Mourrain P, Wang GX. Sleep: DNA Repair Function for Better Neuronal Aging? Current Biology 2019;29:R585-8. [DOI: 10.1016/j.cub.2019.05.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
77 Holland PR. Biology of Neuropeptides: Orexinergic Involvement in Primary Headache Disorders. Headache 2017;57 Suppl 2:76-88. [PMID: 28485849 DOI: 10.1111/head.13078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
78 Depetris-Chauvin A, Fernández-Gamba A, Gorostiza EA, Herrero A, Castaño EM, Ceriani MF. Mmp1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons. PLoS Genet 2014;10:e1004700. [PMID: 25356918 DOI: 10.1371/journal.pgen.1004700] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
79 Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015;20:974-85. [PMID: 25224259 DOI: 10.1038/mp.2014.106] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
80 Olini N, Huber R. Diurnal changes in electrocorticogram sleep slow-wave activity during development in rats. J Sleep Res 2014;23:261-7. [PMID: 24456043 DOI: 10.1111/jsr.12124] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
81 Yan YL, Titus T, Desvignes T, BreMiller R, Batzel P, Sydes J, Farnsworth D, Dillon D, Wegner J, Phillips JB, Peirce J, Dowd J, Buck CL, Miller A, Westerfield M, Postlethwait JH; Undiagnosed Diseases Network. A fish with no sex: gonadal and adrenal functions partition between zebrafish NR5A1 co-orthologs. Genetics 2021;217:iyaa030. [PMID: 33724412 DOI: 10.1093/genetics/iyaa030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Frank MG. Circadian Regulation of Synaptic Plasticity. Biology (Basel) 2016;5:E31. [PMID: 27420105 DOI: 10.3390/biology5030031] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
83 Komagata N, Latifi B, Rusterholz T, Bassetti CLA, Adamantidis A, Schmidt MH. Dynamic REM Sleep Modulation by Ambient Temperature and the Critical Role of the Melanin-Concentrating Hormone System. Curr Biol 2019;29:1976-1987.e4. [PMID: 31155350 DOI: 10.1016/j.cub.2019.05.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
84 Elbaz I, Yelin-Bekerman L, Nicenboim J, Vatine G, Appelbaum L. Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. J Neurosci 2012;32:12961-72. [PMID: 22973020 DOI: 10.1523/JNEUROSCI.1284-12.2012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 39] [Article Influence: 6.1] [Reference Citation Analysis]
85 Vanvinckenroye A, Vandewalle G, Phillips C, Chellappa SL. Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks. Neural Plast 2016;2016:1478684. [PMID: 26885400 DOI: 10.1155/2016/1478684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
86 Slats D, Claassen JA, Verbeek MM, Overeem S. Reciprocal interactions between sleep, circadian rhythms and Alzheimer's disease: focus on the role of hypocretin and melatonin. Ageing Res Rev 2013;12:188-200. [PMID: 22575905 DOI: 10.1016/j.arr.2012.04.003] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 6.6] [Reference Citation Analysis]
87 Parekh PK, McClung CA. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity. Front Psychiatry 2015;6:187. [PMID: 26793129 DOI: 10.3389/fpsyt.2015.00187] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
88 Lombardo MV, Auyeung B, Pramparo T, Quartier A, Courraud J, Holt RJ, Waldman J, Ruigrok ANV, Mooney N, Bethlehem RAI, Lai MC, Kundu P, Bullmore ET, Mandel JL, Piton A, Baron-Cohen S. Sex-specific impact of prenatal androgens on social brain default mode subsystems. Mol Psychiatry 2020;25:2175-88. [PMID: 30104728 DOI: 10.1038/s41380-018-0198-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
89 Frank MG, Cantera R. Sleep, clocks, and synaptic plasticity. Trends Neurosci 2014;37:491-501. [PMID: 25087980 DOI: 10.1016/j.tins.2014.06.005] [Cited by in Crossref: 78] [Cited by in F6Publishing: 67] [Article Influence: 9.8] [Reference Citation Analysis]
90 Shamay-Ramot A, Khermesh K, Porath HT, Barak M, Pinto Y, Wachtel C, Zilberberg A, Lerer-Goldshtein T, Efroni S, Levanon EY, Appelbaum L. Fmrp Interacts with Adar and Regulates RNA Editing, Synaptic Density and Locomotor Activity in Zebrafish. PLoS Genet 2015;11:e1005702. [PMID: 26637167 DOI: 10.1371/journal.pgen.1005702] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 6.1] [Reference Citation Analysis]
91 Zada D, Bronshtein I, Lerer-Goldshtein T, Garini Y, Appelbaum L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat Commun 2019;10:895. [PMID: 30837464 DOI: 10.1038/s41467-019-08806-w] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 15.7] [Reference Citation Analysis]
92 Vanderheyden WM, Lim MM, Musiek ES, Gerstner JR. Alzheimer's Disease and Sleep-Wake Disturbances: Amyloid, Astrocytes, and Animal Models. J Neurosci 2018;38:2901-10. [PMID: 29563238 DOI: 10.1523/JNEUROSCI.1135-17.2017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 8.7] [Reference Citation Analysis]
93 Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, He W, He X, Huang G, Lu H, Wu P, Che Y, Yan YL, Postlethwait JH, Chen W, Wang H. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci 2015;35:2572-87. [PMID: 25673850 DOI: 10.1523/JNEUROSCI.2551-14.2015] [Cited by in Crossref: 74] [Cited by in F6Publishing: 29] [Article Influence: 10.6] [Reference Citation Analysis]
94 da Costa Souza A, Ribeiro S. Sleep deprivation and gene expression. Curr Top Behav Neurosci 2015;25:65-90. [PMID: 25646722 DOI: 10.1007/7854_2014_360] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.9] [Reference Citation Analysis]
95 Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017;232:R141-59. [PMID: 27999088 DOI: 10.1530/JOE-16-0330] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 5.8] [Reference Citation Analysis]
96 Rawashdeh O, Jilg A, Jedlicka P, Slawska J, Thomas L, Saade A, Schwarzacher SW, Stehle JH. PERIOD1 coordinates hippocampal rhythms and memory processing with daytime: Circadian Rhythms In Mouse Hippocampus. Hippocampus 2014;24:712-23. [DOI: 10.1002/hipo.22262] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
97 Zeltser LM, Seeley RJ, Tschöp MH. Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci 2012;15:1336-42. [DOI: 10.1038/nn.3219] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 7.7] [Reference Citation Analysis]
98 Laperchia C, Imperatore R, Azeez IA, Del Gallo F, Bertini G, Grassi-Zucconi G, Cristino L, Bentivoglio M. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization. Brain Struct Funct 2017;222:3847-59. [PMID: 28669028 DOI: 10.1007/s00429-017-1466-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
99 Porkka-Heiskanen T. Sleep homeostasis. Curr Opin Neurobiol 2013;23:799-805. [PMID: 23510741 DOI: 10.1016/j.conb.2013.02.010] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 6.4] [Reference Citation Analysis]
100 Vorster AP, Born J. Sleep and memory in mammals, birds and invertebrates. Neuroscience & Biobehavioral Reviews 2015;50:103-19. [DOI: 10.1016/j.neubiorev.2014.09.020] [Cited by in Crossref: 93] [Cited by in F6Publishing: 65] [Article Influence: 13.3] [Reference Citation Analysis]
101 Yin J, Yuan Q. Structural homeostasis in the nervous system: a balancing act for wiring plasticity and stability. Front Cell Neurosci. 2014;8:439. [PMID: 25653587 DOI: 10.3389/fncel.2014.00439] [Cited by in Crossref: 23] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
102 Nisembaum LG, de Pedro N, Delgado MJ, Sánchez-Bretaño A, Isorna E. Orexin as an input of circadian system in goldfish: Effects on clock gene expression and locomotor activity rhythms. Peptides 2014;52:29-37. [PMID: 24284416 DOI: 10.1016/j.peptides.2013.11.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
103 de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. [PMID: 24575043 DOI: 10.3389/fphar.2014.00016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
104 Hoffman GE. Anatomical Markers of Activity in Hypothalamic Neurons. Compr Physiol 2020;10:549-75. [PMID: 32163202 DOI: 10.1002/cphy.c170021] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Levitas-Djerbi T, Yelin-Bekerman L, Lerer-Goldshtein T, Appelbaum L. Hypothalamic leptin-neurotensin-hypocretin neuronal networks in zebrafish. J Comp Neurol 2015;523:831-48. [PMID: 25421126 DOI: 10.1002/cne.23716] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
106 Hoskins LJ, Volkoff H. Daily patterns of mRNA expression of two core circadian regulatory proteins, Clock2 and Per1, and two appetite-regulating peptides, OX and NPY, in goldfish (Carassius auratus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2012;163:127-36. [DOI: 10.1016/j.cbpa.2012.05.197] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
107 Volkoff H. Sleep and Orexins in Nonmammalian Vertebrates. Sleep Hormones. Elsevier; 2012. pp. 315-39. [DOI: 10.1016/b978-0-12-394623-2.00017-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
108 Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 2014;17:1298-303. [PMID: 25254979 DOI: 10.1038/nn.3810] [Cited by in Crossref: 223] [Cited by in F6Publishing: 207] [Article Influence: 27.9] [Reference Citation Analysis]
109 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
110 Hao H, Luan X, Guo F, Sun X, Gong Y, Xu L. Lateral hypothalamic area orexin-A influence the firing activity of gastric distension-sensitive neurons and gastric motility in rats. Neuropeptides 2016;57:45-52. [PMID: 26919916 DOI: 10.1016/j.npep.2016.02.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
111 Shams S, Rihel J, Ortiz JG, Gerlai R. The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neuroscience & Biobehavioral Reviews 2018;85:176-90. [DOI: 10.1016/j.neubiorev.2017.09.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 10.0] [Reference Citation Analysis]
112 Bushey D, Cirelli C. From genetics to structure to function: exploring sleep in Drosophila. Int Rev Neurobiol 2011;99:213-44. [PMID: 21906542 DOI: 10.1016/B978-0-12-387003-2.00009-4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
113 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
114 Kaufman M, Corner MA, Ziv NE. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling. PLoS One 2012;7:e40980. [PMID: 22911726 DOI: 10.1371/journal.pone.0040980] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
115 Kozol RA, Abrams AJ, James DM, Buglo E, Yan Q, Dallman JE. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish. Front Mol Neurosci 2016;9:55. [PMID: 27458342 DOI: 10.3389/fnmol.2016.00055] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
116 Fifel K, Piggins H, Deboer T. Modeling sleep alterations in Parkinson's disease: How close are we to valid translational animal models? Sleep Medicine Reviews 2016;25:95-111. [DOI: 10.1016/j.smrv.2015.02.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
117 Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021;12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Reference Citation Analysis]
118 Nelson MD, Raizen DM. A sleep state during C. elegans development. Curr Opin Neurobiol 2013;23:824-30. [PMID: 23562486 DOI: 10.1016/j.conb.2013.02.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
119 Torabi Moghadam B, Dabrowski M, Kaminska B, Grabherr MG, Komorowski J. Combinatorial identification of DNA methylation patterns over age in the human brain. BMC Bioinformatics 2016;17:393. [PMID: 27663458 DOI: 10.1186/s12859-016-1259-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
120 Frank MG. Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012;2012:264378. [PMID: 22530156 DOI: 10.1155/2012/264378] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 6.7] [Reference Citation Analysis]