BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 2005;46:787-98. [PMID: 15924864 DOI: 10.1016/j.neuron.2005.04.035] [Cited by in Crossref: 579] [Cited by in F6Publishing: 545] [Article Influence: 34.1] [Reference Citation Analysis]
Number Citing Articles
1 McGregor R, Siegel JM. Illuminating the locus coeruleus: control of posture and arousal. Nat Neurosci 2010;13:1448-9. [PMID: 21102568 DOI: 10.1038/nn1210-1448] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
2 Abbott M, Volkoff H. Thyrotropin Releasing Hormone (TRH) in goldfish (Carassius auratus): Role in the regulation of feeding and locomotor behaviors and interactions with the orexin system and cocaine- and amphetamine regulated transcript (CART). Hormones and Behavior 2011;59:236-45. [DOI: 10.1016/j.yhbeh.2010.12.008] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
3 Watts AG, Sanchez-Watts G. Rapid and preferential activation of Fos protein in hypocretin/orexin neurons following the reversal of dehydration-anorexia. J Comp Neurol 2007;502:768-82. [PMID: 17436292 DOI: 10.1002/cne.21316] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.0] [Reference Citation Analysis]
4 Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 2012;109:E2635-44. [PMID: 22955882 DOI: 10.1073/pnas.1202526109] [Cited by in Crossref: 151] [Cited by in F6Publishing: 140] [Article Influence: 15.1] [Reference Citation Analysis]
5 Duffet L, Kosar S, Panniello M, Viberti B, Bracey E, Zych AD, Radoux-Mergault A, Zhou X, Dernic J, Ravotto L, Tsai YC, Figueiredo M, Tyagarajan SK, Weber B, Stoeber M, Gogolla N, Schmidt MH, Adamantidis AR, Fellin T, Burdakov D, Patriarchi T. A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nat Methods 2022;19:231-41. [PMID: 35145320 DOI: 10.1038/s41592-021-01390-2] [Reference Citation Analysis]
6 Henny P, Jones BE. Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol 2006;499:645-61. [PMID: 17029265 DOI: 10.1002/cne.21131] [Cited by in Crossref: 81] [Cited by in F6Publishing: 88] [Article Influence: 5.1] [Reference Citation Analysis]
7 Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin) 2015;2:379-91. [PMID: 27227052 DOI: 10.1080/23328940.2015.1066921] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
8 Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 2007;27:1616-30. [PMID: 17301170 DOI: 10.1523/JNEUROSCI.3498-06.2007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
9 Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014;29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
10 Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 2005;26:578-86. [PMID: 16183137 DOI: 10.1016/j.tips.2005.09.009] [Cited by in Crossref: 367] [Cited by in F6Publishing: 341] [Article Influence: 21.6] [Reference Citation Analysis]
11 Thakkar MM, Engemann SC, Walsh KM, Sahota PK. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness. Neuroscience 2008;153:875-80. [PMID: 18440150 DOI: 10.1016/j.neuroscience.2008.01.017] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 4.7] [Reference Citation Analysis]
12 Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, Ledoux JE. Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc Natl Acad Sci U S A 2013;110:20260-5. [PMID: 24277819 DOI: 10.1073/pnas.1320325110] [Cited by in Crossref: 110] [Cited by in F6Publishing: 101] [Article Influence: 12.2] [Reference Citation Analysis]
13 Konadhode RR, Pelluru D, Shiromani PJ. Unihemispheric Sleep: An Enigma for Current Models of Sleep-Wake Regulation. Sleep 2016;39:491-4. [PMID: 26856898 DOI: 10.5665/sleep.5508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
14 Pizza F, Antelmi E, Vandi S, Meletti S, Erro R, Baumann CR, Bhatia KP, Dauvilliers Y, Edwards MJ, Iranzo A, Overeem S, Tinazzi M, Liguori R, Plazzi G. The distinguishing motor features of cataplexy: a study from video-recorded attacks. Sleep 2018;41. [DOI: 10.1093/sleep/zsy026] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
15 Selbach O, Haas HL. Hypocretins: The Timing of Sleep and Waking. Chronobiology International 2009;23:63-70. [DOI: 10.1080/07420520500545961] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 2.9] [Reference Citation Analysis]
16 Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014;34:4708-27. [PMID: 24672016 DOI: 10.1523/JNEUROSCI.2617-13.2014] [Cited by in Crossref: 159] [Cited by in F6Publishing: 93] [Article Influence: 19.9] [Reference Citation Analysis]
17 Hassani OK, Krause MR, Mainville L, Cordova CA, Jones BE. Orexin Neurons Respond Differentially to Auditory Cues Associated with Appetitive versus Aversive Outcomes. J Neurosci 2016;36:1747-57. [PMID: 26843654 DOI: 10.1523/JNEUROSCI.3903-15.2016] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
18 Williams KS, Diniz Behn CG. Dynamic Interactions between Orexin and Dynorphin May Delay Onset of Functional Orexin Effects: A Modeling Study. J Biol Rhythms 2011;26:171-81. [DOI: 10.1177/0748730410395471] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
19 Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2017;2:71-84. [PMID: 31236496 DOI: 10.1016/j.nbscr.2016.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
20 Postnova S, Voigt K, Braun HA. A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin. J Biol Rhythms 2009;24:523-35. [PMID: 19926811 DOI: 10.1177/0748730409346655] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
21 Sinton CM. Orexin/hypocretin plays a role in the response to physiological disequilibrium. Sleep Med Rev 2011;15:197-207. [PMID: 21269851 DOI: 10.1016/j.smrv.2010.12.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
22 Oikonomou G, Prober DA. Attacking sleep from a new angle: contributions from zebrafish. Curr Opin Neurobiol 2017;44:80-8. [PMID: 28391131 DOI: 10.1016/j.conb.2017.03.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
23 Schrölkamp M, Jennum PJ, Gammeltoft S, Holm A, Kornum BR, Knudsen S. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2. J Clin Sleep Med 2017;13:235-43. [PMID: 27855741 DOI: 10.5664/jcsm.6454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
24 Williams RH, Burdakov D. Hypothalamic orexins/hypocretins as regulators of breathing. Expert Rev Mol Med 2008;10:e28. [PMID: 18828950 DOI: 10.1017/S1462399408000823] [Cited by in Crossref: 59] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
25 Michinaga S, Hisatsune A, Isohama Y, Katsuki H. An anti-Parkinson drug ropinirole depletes orexin from rat hypothalamic slice culture. Neuroscience Research 2010;68:315-21. [DOI: 10.1016/j.neures.2010.08.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
26 Li H, Lu J, Li S, Huang B, Shi G, Mou T, Xu Y. Increased Hypocretin (Orexin) Plasma Level in Depression, Bipolar Disorder Patients. Front Psychiatry 2021;12:676336. [PMID: 34135789 DOI: 10.3389/fpsyt.2021.676336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
28 Orlowska-Feuer P, Smyk MK, Palus-Chramiec K, Dyl K, Lewandowski MH. Orexin A as a modulator of dorsal lateral geniculate neuronal activity: a comprehensive electrophysiological study on adult rats. Sci Rep 2019;9:16729. [PMID: 31723155 DOI: 10.1038/s41598-019-53012-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Fadel J, Burk JA. Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res 2010;1314:112-23. [PMID: 19699722 DOI: 10.1016/j.brainres.2009.08.046] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 4.3] [Reference Citation Analysis]
30 Equihua AC, De La Herrán-Arita AK, Drucker-Colin R. Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol 2013;4:163. [PMID: 24416019 DOI: 10.3389/fphar.2013.00163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
31 Kumar A, Chanana P, Choudhary S. Emerging role of orexin antagonists in insomnia therapeutics: An update on SORAs and DORAs. Pharmacological Reports 2016;68:231-42. [DOI: 10.1016/j.pharep.2015.09.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
32 Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL, Lin JS. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 2009;29:14423-38. [PMID: 19923277 DOI: 10.1523/JNEUROSCI.2604-09.2009] [Cited by in Crossref: 131] [Cited by in F6Publishing: 86] [Article Influence: 10.1] [Reference Citation Analysis]
33 Hurley SW, Arseth HA, Johnson AK. Orexin neurons couple neural systems mediating fluid balance with motivation-related circuits. Behav Neurosci 2018;132:284-92. [PMID: 29952605 DOI: 10.1037/bne0000250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Wu MF, Nienhuis R, Maidment N, Lam HA, Siegel JM. Role of the hypocretin (orexin) receptor 2 (Hcrt-r2) in the regulation of hypocretin level and cataplexy. J Neurosci 2011;31:6305-10. [PMID: 21525270 DOI: 10.1523/JNEUROSCI.0365-11.2011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
35 Stettner GM, Kubin L, Volgin DV. Antagonism of orexin 1 receptors eliminates motor hyperactivity and improves homing response acquisition in juvenile rats exposed to alcohol during early postnatal period. Behav Brain Res 2011;221:324-8. [PMID: 21420437 DOI: 10.1016/j.bbr.2011.03.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
36 Yamashita T, Yamanaka A. Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 2017;44:94-100. [PMID: 28427008 DOI: 10.1016/j.conb.2017.03.020] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
37 Tononi G. Sleep and Dreaming. The Neurology of Consciousness. Elsevier; 2009. pp. 89-107. [DOI: 10.1016/b978-0-12-374168-4.00008-3] [Cited by in Crossref: 4] [Article Influence: 0.3] [Reference Citation Analysis]
38 Gao XB, Wang AH. Experience-dependent plasticity in hypocretin/orexin neurones: re-setting arousal threshold. Acta Physiol (Oxf) 2010;198:251-62. [PMID: 19785627 DOI: 10.1111/j.1748-1716.2009.02047.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
39 Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 2014;34:6896-909. [PMID: 24828644 DOI: 10.1523/JNEUROSCI.5344-13.2014] [Cited by in Crossref: 128] [Cited by in F6Publishing: 77] [Article Influence: 16.0] [Reference Citation Analysis]
40 Baird JP, Choe A, Loveland JL, Beck J, Mahoney CE, Lord JS, Grigg LA. Orexin-A hyperphagia: hindbrain participation in consummatory feeding responses. Endocrinology 2009;150:1202-16. [PMID: 19008313 DOI: 10.1210/en.2008-0293] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 3.3] [Reference Citation Analysis]
41 Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2016;123:695-729. [PMID: 26497023 DOI: 10.1007/s00702-015-1475-4] [Cited by in Crossref: 89] [Cited by in F6Publishing: 73] [Article Influence: 12.7] [Reference Citation Analysis]
42 Kotz CM, Perez-Leighton CE, Teske JA, Billington CJ. Spontaneous Physical Activity Defends Against Obesity. Curr Obes Rep 2017;6:362-70. [PMID: 29101738 DOI: 10.1007/s13679-017-0288-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
43 Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 2015;172:334-48. [PMID: 24641197 DOI: 10.1111/bph.12639] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 12.1] [Reference Citation Analysis]
44 Torterolo P, Ramos OV, Sampogna S, Chase MH. Hypocretinergic neurons are activated in conjunction with goal-oriented survival-related motor behaviors. Physiol Behav 2011;104:823-30. [PMID: 21839102 DOI: 10.1016/j.physbeh.2011.07.032] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
45 Dauvilliers Y, Arnulf I. Narcolepsie avec cataplexie. Revue Neurologique 2008;164:634-45. [DOI: 10.1016/j.neurol.2007.08.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
46 Burdakov D. Reactive and predictive homeostasis: Roles of orexin/hypocretin neurons. Neuropharmacology 2019;154:61-7. [PMID: 30347195 DOI: 10.1016/j.neuropharm.2018.10.024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
47 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
48 Tamakawa Y, Karashima A, Koyama Y, Katayama N, Nakao M. A quartet neural system model orchestrating sleep and wakefulness mechanisms. J Neurophysiol 2006;95:2055-69. [PMID: 16282204 DOI: 10.1152/jn.00575.2005] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 3.4] [Reference Citation Analysis]
49 Schöne C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 2014;7:697-704. [PMID: 24767990 DOI: 10.1016/j.celrep.2014.03.055] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 12.9] [Reference Citation Analysis]
50 Perez-Leighton CE, Butterick-Peterson TA, Billington CJ, Kotz CM. Role of orexin receptors in obesity: from cellular to behavioral evidence. Int J Obes (Lond) 2013;37:167-74. [PMID: 22391883 DOI: 10.1038/ijo.2012.30] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
51 Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cereb Cortex 2015;25:1330-47. [PMID: 24297328 DOI: 10.1093/cercor/bht326] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
52 Li JX, Yoshida T, Monk KJ, Katz DB. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics. J Neurosci 2013;33:9462-73. [PMID: 23719813 DOI: 10.1523/JNEUROSCI.3935-12.2013] [Cited by in Crossref: 41] [Article Influence: 4.6] [Reference Citation Analysis]
53 Dauvilliers Y, Rompré S, Gagnon JF, Vendette M, Petit D, Montplaisir J. REM sleep characteristics in narcolepsy and REM sleep behavior disorder. Sleep 2007;30:844-9. [PMID: 17682654 DOI: 10.1093/sleep/30.7.844] [Cited by in Crossref: 120] [Cited by in F6Publishing: 92] [Article Influence: 8.0] [Reference Citation Analysis]
54 Boutrel B, Cannella N, de Lecea L. The role of hypocretin in driving arousal and goal-oriented behaviors. Brain Res 2010;1314:103-11. [PMID: 19948148 DOI: 10.1016/j.brainres.2009.11.054] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 6.5] [Reference Citation Analysis]
55 Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018;9:790. [PMID: 30344503 DOI: 10.3389/fneur.2018.00790] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
56 Sargin D. The role of the orexin system in stress response. Neuropharmacology 2019;154:68-78. [PMID: 30266600 DOI: 10.1016/j.neuropharm.2018.09.034] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
57 Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 2009;29:10939-49. [PMID: 19726652 DOI: 10.1523/JNEUROSCI.1205-09.2009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 89] [Article Influence: 11.9] [Reference Citation Analysis]
58 Furlong TM, Vianna DM, Liu L, Carrive P. Hypocretin/orexin contributes to the expression of some but not all forms of stress and arousal. Eur J Neurosci 2009;30:1603-14. [PMID: 19811530 DOI: 10.1111/j.1460-9568.2009.06952.x] [Cited by in Crossref: 113] [Cited by in F6Publishing: 118] [Article Influence: 8.7] [Reference Citation Analysis]
59 Szentirmai E, Kapás L, Krueger JM. Ghrelin microinjection into forebrain sites induces wakefulness and feeding in rats. Am J Physiol Regul Integr Comp Physiol 2007;292:R575-85. [PMID: 16917015 DOI: 10.1152/ajpregu.00448.2006] [Cited by in Crossref: 84] [Cited by in F6Publishing: 85] [Article Influence: 5.3] [Reference Citation Analysis]
60 Berridge CW, España RA, Vittoz NM. Hypocretin/orexin in arousal and stress. Brain Res 2010;1314:91-102. [PMID: 19748490 DOI: 10.1016/j.brainres.2009.09.019] [Cited by in Crossref: 115] [Cited by in F6Publishing: 115] [Article Influence: 8.8] [Reference Citation Analysis]
61 Jalewa J, Wong-lin K, Mcginnity TM, Prasad G, Hölscher C. Increased number of orexin/hypocretin neurons with high and prolonged external stress-induced depression. Behavioural Brain Research 2014;272:196-204. [DOI: 10.1016/j.bbr.2014.05.030] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
62 Luppi PH, Clement O, Sapin E, Peyron C, Gervasoni D, Léger L, Fort P. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch 2012;463:43-52. [PMID: 22083642 DOI: 10.1007/s00424-011-1054-y] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 7.2] [Reference Citation Analysis]
63 Bastianini S, Lo Martire V, Berteotti C, Silvani A, Ohtsu H, Lin J, Zoccoli G. High-amplitude theta wave bursts characterizing narcoleptic mice and patients are also produced by histamine deficiency in mice. J Sleep Res 2016;25:591-5. [DOI: 10.1111/jsr.12404] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
64 Schreyer S, Büttner-Ennever JA, Tang X, Mustari MJ, Horn AK. Orexin-A inputs onto visuomotor cell groups in the monkey brainstem. Neuroscience 2009;164:629-40. [PMID: 19703526 DOI: 10.1016/j.neuroscience.2009.08.039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
65 Sharma R, Sahota P, Thakkar MM. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. Sleep 2014;37:525-33. [PMID: 24587575 DOI: 10.5665/sleep.3490] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
66 Xi M, Fung SJ, Yamuy J, Chase MH. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation. Neuroscience 2015;298:190-9. [PMID: 25892701 DOI: 10.1016/j.neuroscience.2015.04.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
67 Hanriot L, Camargo N, Courau AC, Leger L, Luppi PH, Peyron C. Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Comp Neurol 2007;505:147-57. [DOI: 10.1002/cne.21482] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 4.1] [Reference Citation Analysis]
68 Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE. Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci 2013;33:9734-42. [PMID: 23739970 DOI: 10.1523/JNEUROSCI.5632-12.2013] [Cited by in Crossref: 63] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
69 Lu J, Zhao J, Balesar R, Fronczek R, Zhu QB, Wu XY, Hu SH, Bao AM, Swaab DF. Sexually Dimorphic Changes of Hypocretin (Orexin) in Depression. EBioMedicine 2017;18:311-9. [PMID: 28377228 DOI: 10.1016/j.ebiom.2017.03.043] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]
70 Arrigoni E, Mochizuki T, Scammell TE. Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 2010;198:223-35. [PMID: 19723027 DOI: 10.1111/j.1748-1716.2009.02036.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 4.5] [Reference Citation Analysis]
71 Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005;437:1257-63. [DOI: 10.1038/nature04284] [Cited by in Crossref: 1577] [Cited by in F6Publishing: 1306] [Article Influence: 92.8] [Reference Citation Analysis]
72 Nishino S. Narcolepsy. Sleep Medicine Clinics 2006;1:47-61. [DOI: 10.1016/j.jsmc.2005.11.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
73 Schmidt FM, Brügel M, Kratzsch J, Strauß M, Sander C, Baum P, Thiery J, Hegerl U, Schönknecht P. Cerebrospinal fluid hypocretin-1 (orexin A) levels in mania compared to unipolar depression and healthy controls. Neuroscience Letters 2010;483:20-2. [DOI: 10.1016/j.neulet.2010.07.038] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
74 Dell L, Spocter MA, Patzke N, Karlson KÆ, Alagaili AN, Bennett NC, Muhammed OB, Bertelsen MF, Siegel JM, Manger PR. Orexinergic bouton density is lower in the cerebral cortex of cetaceans compared to artiodactyls. Journal of Chemical Neuroanatomy 2015;68:61-76. [DOI: 10.1016/j.jchemneu.2015.07.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
75 Khatami R, Birkmann S, Bassetti CL. Amygdala dysfunction in narcolepsy-cataplexy. J Sleep Res 2007;16:226-9. [PMID: 17542953 DOI: 10.1111/j.1365-2869.2007.00587.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 2.2] [Reference Citation Analysis]
76 Yang XA, Song CG, Yuan F, Zhao JJ, Jiang YL, Yang F, Kang XG, Jiang W. Prognostic roles of sleep electroencephalography pattern and circadian rhythm biomarkers in the recovery of consciousness in patients with coma: a prospective cohort study. Sleep Med 2020;69:204-12. [PMID: 32143064 DOI: 10.1016/j.sleep.2020.01.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
77 Obukuro K, Takigawa M, Hisatsune A, Isohama Y, Katsuki H. Quinolinate induces selective loss of melanin-concentrating hormone neurons, rather than orexin neurons, in the hypothalamus of mice and young rats. Neuroscience 2010;170:298-307. [DOI: 10.1016/j.neuroscience.2010.06.081] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
78 Sotelo MI, Tyan J, Markunas C, Sulaman BA, Horwitz L, Lee H, Morrow JG, Rothschild G, Duan B, Eban-Rothschild A. Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr Biol 2022:S0960-9822(21)01740-1. [PMID: 35051354 DOI: 10.1016/j.cub.2021.12.053] [Reference Citation Analysis]
79 Siegel JM. Rapid Eye Movement Sleep. Principles and Practice of Sleep Medicine. Elsevier; 2017. pp. 78-95.e6. [DOI: 10.1016/b978-0-323-24288-2.00008-8] [Cited by in Crossref: 13] [Article Influence: 2.6] [Reference Citation Analysis]
80 Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019;224:1097-117. [PMID: 30612231 DOI: 10.1007/s00429-018-01820-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
81 Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2014;8:244. [PMID: 25620917 DOI: 10.3389/fnsys.2014.00244] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
82 Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 2005;568:1003-20. [PMID: 16123113 DOI: 10.1113/jphysiol.2005.085829] [Cited by in Crossref: 74] [Cited by in F6Publishing: 80] [Article Influence: 4.4] [Reference Citation Analysis]
83 Arrigoni E, Fuller PM. The Circuit, Cellular, and Synaptic Bases of Sleep-Wake Regulation. Handbook of Sleep Research. Elsevier; 2019. pp. 65-88. [DOI: 10.1016/b978-0-12-813743-7.00005-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 Lu JW, Fenik VB, Branconi JL, Mann GL, Rukhadze I, Kubin L. Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats. J Physiol 2007;582:553-67. [PMID: 17495048 DOI: 10.1113/jphysiol.2007.127613] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.3] [Reference Citation Analysis]
85 Burgess CR. Histamine and orexin in the control of arousal, locomotion, and motivation. J Neurosci 2010;30:2810-1. [PMID: 20181578 DOI: 10.1523/JNEUROSCI.0045-10.2010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
86 Horne J. Why REM sleep? Clues beyond the laboratory in a more challenging world. Biological Psychology 2013;92:152-68. [DOI: 10.1016/j.biopsycho.2012.10.010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
87 Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 2009;106:2418-22. [PMID: 19188611 DOI: 10.1073/pnas.0811400106] [Cited by in Crossref: 289] [Cited by in F6Publishing: 267] [Article Influence: 22.2] [Reference Citation Analysis]
88 Wu MF, Nienhuis R, Maidment N, Lam HA, Siegel JM. Cerebrospinal fluid hypocretin (orexin) levels are elevated by play but are not raised by exercise and its associated heart rate, blood pressure, respiration or body temperature changes. Arch Ital Biol 2011;149:492-8. [PMID: 22205595 DOI: 10.4449/aib.v149i4.1315] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
89 Oishi Y, Williams RH, Agostinelli L, Arrigoni E, Fuller PM, Mochizuki T, Saper CB, Scammell TE. Role of the medial prefrontal cortex in cataplexy. J Neurosci 2013;33:9743-51. [PMID: 23739971 DOI: 10.1523/JNEUROSCI.0499-13.2013] [Cited by in Crossref: 56] [Cited by in F6Publishing: 37] [Article Influence: 6.2] [Reference Citation Analysis]
90 Singareddy R, Uhde T, Commissaris R. Differential effects of hypocretins on noise-alone versus potentiated startle responses. Physiol Behav 2006;89:650-5. [PMID: 17028045 DOI: 10.1016/j.physbeh.2006.08.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 0.9] [Reference Citation Analysis]
91 Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 2007;117:4022-33. [PMID: 18060037 DOI: 10.1172/JCI32829] [Cited by in Crossref: 79] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
92 López M, Nogueiras R, Tena-Sempere M, Diéguez C. Orexins (hypocretins) actions on the GHRH/somatostatin-GH axis. Acta Physiol (Oxf) 2010;198:325-34. [PMID: 19769635 DOI: 10.1111/j.1748-1716.2009.02042.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
93 Pintwala S, Peever J. Circuit mechanisms of sleepiness and cataplexy in narcolepsy. Current Opinion in Neurobiology 2017;44:50-8. [DOI: 10.1016/j.conb.2017.02.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
94 Chase MH. Motor control during sleep and wakefulness: Clarifying controversies and resolving paradoxes. Sleep Medicine Reviews 2013;17:299-312. [DOI: 10.1016/j.smrv.2012.09.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
95 Ishibashi M, Gumenchuk I, Miyazaki K, Inoue T, Ross WN, Leonard CS. Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization. J Neurosci 2016;36:10097-115. [PMID: 27683906 DOI: 10.1523/JNEUROSCI.0635-16.2016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
96 Burdakov D, Alexopoulos H. Metabolic state signalling through central hypocretin/orexin neurons. J Cell Mol Med 2005;9:795-803. [PMID: 16364191 DOI: 10.1111/j.1582-4934.2005.tb00380.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 2.3] [Reference Citation Analysis]
97 Miyata K, Kuwaki T, Ootsuka Y. The integrated ultradian organization of behavior and physiology in mice and the contribution of orexin to the ultradian patterning. Neuroscience 2016;334:119-33. [PMID: 27491480 DOI: 10.1016/j.neuroscience.2016.07.041] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
98 Nevárez N, de Lecea L. Hypocretin and the Regulation of Sleep-Wake Transitions. Handbook of Sleep Research. Elsevier; 2019. pp. 89-99. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
99 Chan PC, Lee HH, Hong CT, Hu CJ, Wu D. REM Sleep Behavior Disorder (RBD) in Dementia with Lewy Bodies (DLB). Behav Neurol 2018;2018:9421098. [PMID: 30018672 DOI: 10.1155/2018/9421098] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
100 Arthaud S, Varin C, Gay N, Libourel P, Chauveau F, Fort P, Luppi P, Peyron C. Paradoxical (REM) sleep deprivation in mice using the small-platforms-over-water method: polysomnographic analyses and melanin-concentrating hormone and hypocretin/orexin neuronal activation before, during and after deprivation. J Sleep Res 2015;24:309-19. [DOI: 10.1111/jsr.12269] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
101 Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 345-63. [DOI: 10.1002/cphy.c190013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
102 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
103 Matsuki T, Sakurai T. Orexins and Orexin Receptors: From Molecules to Integrative Physiology. In: Civelli O, Zhou Q, editors. Orphan G Protein-Coupled Receptors and Novel Neuropeptides. Berlin: Springer Berlin Heidelberg; 2008. pp. 27-55. [DOI: 10.1007/400_2007_047] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Reference Citation Analysis]
104 Meerlo P, Sgoifo A, Suchecki D. Restricted and disrupted sleep: Effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Medicine Reviews 2008;12:197-210. [DOI: 10.1016/j.smrv.2007.07.007] [Cited by in Crossref: 459] [Cited by in F6Publishing: 418] [Article Influence: 32.8] [Reference Citation Analysis]
105 Sakurai T, Mieda M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci 2011;32:451-62. [PMID: 21565412 DOI: 10.1016/j.tips.2011.03.007] [Cited by in Crossref: 139] [Cited by in F6Publishing: 136] [Article Influence: 12.6] [Reference Citation Analysis]
106 Burt J, Alberto CO, Parsons MP, Hirasawa M. Local network regulation of orexin neurons in the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 2011;301:R572-80. [PMID: 21697524 DOI: 10.1152/ajpregu.00674.2010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
107 Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016;44:2846-57. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
108 McKillop LE, Vyazovskiy VV. Sleep- and Wake-Like States in Small Networks In Vivo and In Vitro. Handb Exp Pharmacol 2019;253:97-121. [PMID: 30443784 DOI: 10.1007/164_2018_174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
109 Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015;9:111. [PMID: 26300745 DOI: 10.3389/fnsys.2015.00111] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
110 Rachalski A, Alexandre C, Bernard JF, Saurini F, Lesch KP, Hamon M, Adrien J, Fabre V. Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 2009;29:15575-85. [PMID: 20007481 DOI: 10.1523/JNEUROSCI.3138-09.2009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
111 Linsambarth S, Moraga-amaro R, Quintana-donoso D, Rojas S, Stehberg J. The Amygdala and Anxiety. In: Ferry B, editor. The Amygdala - Where Emotions Shape Perception, Learning and Memories. InTech; 2017. [DOI: 10.5772/intechopen.68618] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
112 Xi M, Chase MH. The injection of hypocretin-1 into the nucleus pontis oralis induces either active sleep or wakefulness depending on the behavioral state when it is administered. Sleep 2010;33:1236-43. [PMID: 20857871 DOI: 10.1093/sleep/33.9.1236] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
113 Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 2006;100:271-83. [PMID: 17689057 DOI: 10.1016/j.jphysparis.2007.05.006] [Cited by in Crossref: 121] [Cited by in F6Publishing: 110] [Article Influence: 8.1] [Reference Citation Analysis]
114 González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 2016;7:11395. [PMID: 27102565 DOI: 10.1038/ncomms11395] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 14.5] [Reference Citation Analysis]
115 Jiang H, Huang J, Shen Y, Guo S, Wang L, Han C, Liu L, Ma K, Xia Y, Li J, Xu X, Xiong N, Wang T. RBD and Neurodegenerative Diseases. Mol Neurobiol 2017;54:2997-3006. [PMID: 27032389 DOI: 10.1007/s12035-016-9831-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
116 Mavanji V, Pomonis B, Kotz CM. Orexin, serotonin, and energy balance. WIREs Mech Dis 2022;14:e1536. [PMID: 35023323 DOI: 10.1002/wsbm.1536] [Reference Citation Analysis]
117 Sakai K. Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. Neuroscience 2011;182:144-61. [PMID: 21396987 DOI: 10.1016/j.neuroscience.2011.03.010] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.6] [Reference Citation Analysis]
118 Sternson SM, Atasoy D, Betley JN, Henry FE, Xu S. An Emerging Technology Framework for the Neurobiology of Appetite. Cell Metab 2016;23:234-53. [PMID: 26724860 DOI: 10.1016/j.cmet.2015.12.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 5.4] [Reference Citation Analysis]
119 Satoh S, Matsumura H, Kanbayashi T, Yoshida Y, Urakami T, Nakajima T, Kimura N, Nishino S, Yoneda H. Expression pattern of FOS in orexin neurons during sleep induced by an adenosine A2A receptor agonist. Behavioural Brain Research 2006;170:277-86. [DOI: 10.1016/j.bbr.2006.03.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
120 España RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep 2011;34:845-58. [PMID: 21731134 DOI: 10.5665/SLEEP.1112] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 7.4] [Reference Citation Analysis]
121 Vassalli A, Franken P. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A 2017;114:E5464-73. [PMID: 28630298 DOI: 10.1073/pnas.1700983114] [Cited by in Crossref: 52] [Cited by in F6Publishing: 37] [Article Influence: 10.4] [Reference Citation Analysis]
122 Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 2013;121:117-24. [PMID: 23562864 DOI: 10.1016/j.physbeh.2013.03.023] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 7.7] [Reference Citation Analysis]
123 Bai YJ, Li YH, Zheng XG, Han J, Yang XY, Sui N. Orexin A attenuates unconditioned sexual motivation in male rats. Pharmacol Biochem Behav 2009;91:581-9. [PMID: 18952120 DOI: 10.1016/j.pbb.2008.09.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
124 Anastasian ZH, Ornstein E, Heyer EJ. Delayed arousal. Anesthesiol Clin 2009;27:429-50, table of contents. [PMID: 19825485 DOI: 10.1016/j.anclin.2009.07.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
125 Snow MB, Fraigne JJ, Thibault-Messier G, Chuen VL, Thomasian A, Horner RL, Peever J. GABA Cells in the Central Nucleus of the Amygdala Promote Cataplexy. J Neurosci 2017;37:4007-22. [PMID: 28209737 DOI: 10.1523/JNEUROSCI.4070-15.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 4.6] [Reference Citation Analysis]
126 Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D. Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res 2009;1304:96-104. [PMID: 19781535 DOI: 10.1016/j.brainres.2009.09.066] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
127 Rai S, Kumar S, Alam MA, Szymusiak R, McGinty D, Alam MN. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience 2010;167:40-8. [PMID: 20109537 DOI: 10.1016/j.neuroscience.2010.01.044] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
128 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
129 Melzi S, Morel AL, Scoté-Blachon C, Liblau R, Dauvilliers Y, Peyron C. Histamine in murine narcolepsy: What do genetic and immune models tell us? Brain Pathol 2021;:e13027. [PMID: 34672414 DOI: 10.1111/bpa.13027] [Reference Citation Analysis]
130 Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. Elife 2018;7:e32637. [PMID: 29405117 DOI: 10.7554/eLife.32637] [Cited by in Crossref: 52] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
131 Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature 2006;441:589-94. [PMID: 16688184 DOI: 10.1038/nature04767] [Cited by in Crossref: 726] [Cited by in F6Publishing: 646] [Article Influence: 45.4] [Reference Citation Analysis]
132 Luppi P, Clément O, Sapin E, Gervasoni D, Peyron C, Léger L, Salvert D, Fort P. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Medicine Reviews 2011;15:153-63. [DOI: 10.1016/j.smrv.2010.08.002] [Cited by in Crossref: 176] [Cited by in F6Publishing: 146] [Article Influence: 16.0] [Reference Citation Analysis]
133 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
134 Fonseca EM, Dias MB, Bícego KC, Gargaglioni LH. Orexin in the toad Rhinella schneideri: The location of orexinergic neurons and the role of orexin in ventilatory responses to hypercarbia and hypoxia. Respir Physiol Neurobiol 2016;224:90-9. [PMID: 25434286 DOI: 10.1016/j.resp.2014.11.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
135 Methippara MM, Alam MN, Kumar S, Bashir T, Szymusiak R, McGinty D. Administration of the protein synthesis inhibitor, anisomycin, has distinct sleep-promoting effects in lateral preoptic and perifornical hypothalamic sites in rats. Neuroscience 2008;151:1-11. [PMID: 18055127 DOI: 10.1016/j.neuroscience.2007.09.051] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
136 Tsunematsu T, Tanaka KF, Yamanaka A, Koizumi A. Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light. Neuroscience Research 2013;75:23-8. [DOI: 10.1016/j.neures.2012.07.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
137 Mieda M, Sakurai T. Overview of orexin/hypocretin system. Orexin/Hypocretin System. Elsevier; 2012. pp. 5-14. [DOI: 10.1016/b978-0-444-59489-1.00002-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 8] [Article Influence: 3.2] [Reference Citation Analysis]
138 Peyron C, Valentin F, Bayard S, Hanriot L, Bedetti C, Rousset B, Luppi P, Dauvilliers Y. Melanin concentrating hormone in central hypersomnia. Sleep Medicine 2011;12:768-72. [DOI: 10.1016/j.sleep.2011.04.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
139 Benedetto L, Chase MH, Torterolo P. GABAergic processes within the median preoptic nucleus promote NREM sleep. Behavioural Brain Research 2012;232:60-5. [DOI: 10.1016/j.bbr.2012.03.033] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
140 Barateau L, Lopez R, Dauvilliers Y. Clinical neurophysiology of CNS hypersomnias. Handb Clin Neurol 2019;161:353-67. [PMID: 31307613 DOI: 10.1016/B978-0-444-64142-7.00060-6] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
141 Ma X, Zubcevic L, Brüning JC, Ashcroft FM, Burdakov D. Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. J Neurosci 2007;27:1529-33. [PMID: 17301161 DOI: 10.1523/JNEUROSCI.3583-06.2007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
142 Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler B, Yanagisawa M, Sakurai T. Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 2009;106:4459-64. [PMID: 19246384 DOI: 10.1073/pnas.0811126106] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 6.2] [Reference Citation Analysis]
143 Zhang J, Li B, Yu L, He YC, Li HZ, Zhu JN, Wang JJ. A role for orexin in central vestibular motor control. Neuron 2011;69:793-804. [PMID: 21338887 DOI: 10.1016/j.neuron.2011.01.026] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 6.3] [Reference Citation Analysis]
144 Moorman DE, Aston-Jones G. Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: diurnal influences. J Neurosci 2010;30:15585-99. [PMID: 21084614 DOI: 10.1523/JNEUROSCI.2871-10.2010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
145 Brischoux F, Mainville L, Jones BE. Muscarinic-2 and orexin-2 receptors on GABAergic and other neurons in the rat mesopontine tegmentum and their potential role in sleep-wake state control. J Comp Neurol 2008;510:607-30. [DOI: 10.1002/cne.21803] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 2.8] [Reference Citation Analysis]
146 Overeem S, Reading P, Bassetti CL. Narcolepsy. Sleep Medicine Clinics 2012;7:263-81. [DOI: 10.1016/j.jsmc.2012.03.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
147 Perogamvros L, Schwartz S. The roles of the reward system in sleep and dreaming. Neurosci Biobehav Rev 2012;36:1934-51. [PMID: 22669078 DOI: 10.1016/j.neubiorev.2012.05.010] [Cited by in Crossref: 101] [Cited by in F6Publishing: 85] [Article Influence: 10.1] [Reference Citation Analysis]
148 Lawrence AJ. Regulation of alcohol-seeking by orexin (hypocretin) neurons. Brain Res 2010;1314:124-9. [PMID: 19646424 DOI: 10.1016/j.brainres.2009.07.072] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
149 López M, Tena-Sempere M, Diéguez C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 2010;31:113-27. [PMID: 19654017 DOI: 10.1016/j.yfrne.2009.07.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 4.0] [Reference Citation Analysis]
150 Kuwaki T, Zhang W. Orexin neurons as arousal-associated modulators of central cardiorespiratory regulation. Respiratory Physiology & Neurobiology 2010;174:43-54. [DOI: 10.1016/j.resp.2010.04.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
151 Horne JA. Human REM sleep: influence on feeding behaviour, with clinical implications. Sleep Med 2015;16:910-6. [PMID: 26122167 DOI: 10.1016/j.sleep.2015.04.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
152 Gao XB. Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin. Vitam Horm 2012;89:35-59. [PMID: 22640607 DOI: 10.1016/B978-0-12-394623-2.00003-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
153 Fonseca EM, Janes TA, Fournier S, Gargaglioni LH, Kinkead R. Orexin-A inhibits fictive air breathing responses to respiratory stimuli in the bullfrog tadpole (Lithobates catesbeianus). J Exp Biol 2021;224:jeb240804. [PMID: 33914034 DOI: 10.1242/jeb.240804] [Reference Citation Analysis]
154 Mieda M, Hasegawa E, Kisanuki YY, Sinton CM, Yanagisawa M, Sakurai T. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci 2011;31:6518-26. [PMID: 21525292 DOI: 10.1523/JNEUROSCI.6506-10.2011] [Cited by in Crossref: 134] [Cited by in F6Publishing: 78] [Article Influence: 12.2] [Reference Citation Analysis]
155 Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017;6:212. [PMID: 28357049 DOI: 10.12688/f1000research.9677.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
156 Szymusiak R. Body temperature and sleep. Handb Clin Neurol 2018;156:341-51. [PMID: 30454599 DOI: 10.1016/B978-0-444-63912-7.00020-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
157 Peyron C, Kilduff TS. Mapping the Hypocretin/Orexin Neuronal System: An Unexpectedly Productive Journey. J Neurosci 2017;37:2268-72. [PMID: 28250055 DOI: 10.1523/JNEUROSCI.1708-16.2016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.6] [Reference Citation Analysis]
158 Torterolo P, Sampogna S, Morales FR, Chase MH. MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 2006;1119:101-14. [PMID: 17027934 DOI: 10.1016/j.brainres.2006.08.100] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 3.4] [Reference Citation Analysis]
159 Dergacheva O, Philbin K, Bateman R, Mendelowitz D. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus. Neuroscience 2011;175:18-23. [PMID: 21134420 DOI: 10.1016/j.neuroscience.2010.11.067] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
160 Wang Y, Eddison M, Fleishman G, Weigert M, Xu S, Wang T, Rokicki K, Goina C, Henry FE, Lemire AL, Schmidt U, Yang H, Svoboda K, Myers EW, Saalfeld S, Korff W, Sternson SM, Tillberg PW. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 2021;184:6361-6377.e24. [PMID: 34875226 DOI: 10.1016/j.cell.2021.11.024] [Reference Citation Analysis]
161 Corrigall WA. Hypocretin mechanisms in nicotine addiction: evidence and speculation. Psychopharmacology (Berl) 2009;206:23-37. [PMID: 19529922 DOI: 10.1007/s00213-009-1588-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
162 Fort P, Bassetti CL, Luppi P. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. European Journal of Neuroscience 2009;29:1741-53. [DOI: 10.1111/j.1460-9568.2009.06722.x] [Cited by in Crossref: 96] [Cited by in F6Publishing: 70] [Article Influence: 7.4] [Reference Citation Analysis]
163 Sakai K. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience 2011;197:200-24. [DOI: 10.1016/j.neuroscience.2011.09.024] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
164 Bhattacharya A, Lenka A, Stezin A, Kamble N, Pal PK. Overview of sleep disturbances and their management in Parkinson plus disorders. Journal of the Neurological Sciences 2020;415:116891. [DOI: 10.1016/j.jns.2020.116891] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Doghramji PP. Integrating Modern Concepts of Insomnia and its Contemporary Treatment into Primary Care. Postgraduate Medicine 2015;126:82-101. [DOI: 10.3810/pgm.2014.09.2802] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
166 McGregor R, Wu MF, Barber G, Ramanathan L, Siegel JM. Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement versus operant avoidance and light level. J Neurosci 2011;31:15455-67. [PMID: 22031892 DOI: 10.1523/JNEUROSCI.4017-11.2011] [Cited by in Crossref: 64] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
167 Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin K, Hölscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 2014;9:e88003. [PMID: 24516577 DOI: 10.1371/journal.pone.0088003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
168 Alam MN, Kumar S, Suntsova N, Bashir T, Szymusiak R, McGinty D. GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats. Neuroscience 2010;167:920-8. [PMID: 20188152 DOI: 10.1016/j.neuroscience.2010.02.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
169 Tarasiuk A, Segev Y. Abnormal Growth and Feeding Behavior in Upper Airway Obstruction in Rats. Front Endocrinol (Lausanne) 2018;9:298. [PMID: 29915561 DOI: 10.3389/fendo.2018.00298] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
170 Mochizuki T, Arrigoni E, Marcus JN, Clark EL, Yamamoto M, Honer M, Borroni E, Lowell BB, Elmquist JK, Scammell TE. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci U S A 2011;108:4471-6. [PMID: 21368172 DOI: 10.1073/pnas.1012456108] [Cited by in Crossref: 85] [Cited by in F6Publishing: 90] [Article Influence: 7.7] [Reference Citation Analysis]
171 Brisbare-roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H, Flores S, Mueller C, Nayler O, van Gerven J, de Haas SL, Hess P, Qiu C, Buchmann S, Scherz M, Weller T, Fischli W, Clozel M, Jenck F. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 2007;13:150-5. [DOI: 10.1038/nm1544] [Cited by in Crossref: 396] [Cited by in F6Publishing: 371] [Article Influence: 26.4] [Reference Citation Analysis]
172 Siegel JM. The stuff dreams are made of: anatomical substrates of REM sleep. Nat Neurosci 2006;9:721-2. [PMID: 16732200 DOI: 10.1038/nn0606-721] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 1.9] [Reference Citation Analysis]
173 Moszczynski A, Murray BJ. Neurobiological Aspects of Sleep Physiology. Neurologic Clinics 2012;30:963-85. [DOI: 10.1016/j.ncl.2012.08.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
174 Koban M, Le WW, Hoffman GE. Changes in hypothalamic corticotropin-releasing hormone, neuropeptide Y, and proopiomelanocortin gene expression during chronic rapid eye movement sleep deprivation of rats. Endocrinology 2006;147:421-31. [PMID: 16210372 DOI: 10.1210/en.2005-0695] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 3.4] [Reference Citation Analysis]
175 Nishino S. The hypothalamic peptidergic system, hypocretin/orexin and vigilance control. Neuropeptides 2007;41:117-33. [DOI: 10.1016/j.npep.2007.01.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 2.3] [Reference Citation Analysis]
176 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
177 Cano G, Mochizuki T, Saper CB. Neural circuitry of stress-induced insomnia in rats. J Neurosci 2008;28:10167-84. [PMID: 18829974 DOI: 10.1523/JNEUROSCI.1809-08.2008] [Cited by in Crossref: 143] [Cited by in F6Publishing: 61] [Article Influence: 10.2] [Reference Citation Analysis]
178 Jackson KL, Dampney BW, Moretti JL, Stevenson ER, Davern PJ, Carrive P, Head GA. Contribution of Orexin to the Neurogenic Hypertension in BPH/2J Mice. Hypertension 2016;67:959-69. [PMID: 26975709 DOI: 10.1161/HYPERTENSIONAHA.115.07053] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
179 [DOI: 10.1101/539502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
180 Luppi P, Fort P. Neurochemistry of sleep. Sleep Disorders. Elsevier; 2011. pp. 173-90. [DOI: 10.1016/b978-0-444-52006-7.00011-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
181 Holm A, Possovre ML, Bandarabadi M, Moseholm KF, Justinussen JL, Bozic I, Lemcke R, Arribat Y, Amati F, Silahtaroglu A, Juventin M, Adamantidis A, Tafti M, Kornum BR. The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc Natl Acad Sci U S A 2022;119:e2112225119. [PMID: 35452310 DOI: 10.1073/pnas.2112225119] [Reference Citation Analysis]
182 Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019;20:83-93. [PMID: 30546103 DOI: 10.1038/s41583-018-0097-x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 18.7] [Reference Citation Analysis]
183 Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020;187:101771. [PMID: 32058043 DOI: 10.1016/j.pneurobio.2020.101771] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
184 da Silva EN, Horta-Júnior JAC, Gargaglioni LH, Dias MB. ATP in the lateral hypothalamus/perifornical area enhances the CO2 chemoreflex control of breathing. Exp Physiol 2018;103:1679-91. [PMID: 30242927 DOI: 10.1113/EP087182] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
185 Nishino S, Mignot E. Narcolepsy and cataplexy. Sleep Disorders. Elsevier; 2011. pp. 783-814. [DOI: 10.1016/b978-0-444-52007-4.00007-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 2.9] [Reference Citation Analysis]
186 Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 2009;29:11215-25. [PMID: 19741128 DOI: 10.1523/JNEUROSCI.6096-08.2009] [Cited by in Crossref: 245] [Cited by in F6Publishing: 162] [Article Influence: 18.8] [Reference Citation Analysis]
187 Gao XB, Horvath TL. Feeding Behavior: Hypocretin/Orexin Neurons Act between Food Seeking and Eating. Curr Biol 2016;26:R845-7. [PMID: 27676302 DOI: 10.1016/j.cub.2016.07.069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
188 Schöne C, Cao ZF, Apergis-Schoute J, Adamantidis A, Sakurai T, Burdakov D. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci 2012;32:12437-43. [PMID: 22956835 DOI: 10.1523/JNEUROSCI.0706-12.2012] [Cited by in Crossref: 95] [Cited by in F6Publishing: 66] [Article Influence: 9.5] [Reference Citation Analysis]
189 Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacology of Sleep and Wakefulness. Sleep Med Clin 2010;5:513-28. [PMID: 21278831 DOI: 10.1016/j.jsmc.2010.08.003] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
190 Alò R, Avolio E, Mele M, Di Vito A, Canonaco M. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster. J Neurol Sci 2015;351:46-51. [PMID: 25732800 DOI: 10.1016/j.jns.2015.02.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
191 Burdakov D. K+ channels stimulated by glucose: a new energy-sensing pathway. Pflugers Arch - Eur J Physiol 2007;454:19-27. [DOI: 10.1007/s00424-006-0189-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.7] [Reference Citation Analysis]
192 Toyama S, Shimoyama N, Tagaito Y, Nagase H, Saitoh T, Yanagisawa M, Shimoyama M. Nonpeptide Orexin-2 Receptor Agonist Attenuates Morphine-induced Sedative Effects in Rats. Anesthesiology 2018;128:992-1003. [PMID: 29521652 DOI: 10.1097/ALN.0000000000002161] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
193 Gompf H, Chen J, Sun Y, Yanagisawa M, Aston-Jones G, Kelz MB. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology 2009;111:1001-9. [PMID: 19809293 DOI: 10.1097/ALN.0b013e3181b764b3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
194 Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacology of Sleep and Wakefulness: 2012 Update. Sleep Med Clin 2012;7:469-86. [PMID: 23162386 DOI: 10.1016/j.jsmc.2012.06.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
195 Baimel C, Borgland SL. Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse. Curr Top Behav Neurosci 2017;33:283-304. [PMID: 28303403 DOI: 10.1007/7854_2016_44] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
196 Chiu CN, Prober DA. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front Neural Circuits 2013;7:58. [PMID: 23576957 DOI: 10.3389/fncir.2013.00058] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
197 Gao X. The Role of Melanin-Concentrating Hormone in the Regulation of the Sleep/Wake Cycle: Sleep Promoter or Arousal Modulator? In: Pandi-perumal SR, Torterolo P, Monti JM, editors. Melanin-Concentrating Hormone and Sleep. Cham: Springer International Publishing; 2018. pp. 57-74. [DOI: 10.1007/978-3-319-75765-0_3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
198 Silvani A, Bastianini S, Berteotti C, Lo Martire V, Zoccoli G. Treating hypertension by targeting orexin receptors: potential effects on the sleep-related blood pressure dipping profile. J Physiol 2013;591:6115-6. [PMID: 24293532 DOI: 10.1113/jphysiol.2013.265504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
199 Deboer T. Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning? Neurobiol Sleep Circadian Rhythms 2018;5:68-77. [PMID: 31236513 DOI: 10.1016/j.nbscr.2018.02.003] [Cited by in Crossref: 57] [Cited by in F6Publishing: 40] [Article Influence: 14.3] [Reference Citation Analysis]
200 Deng BS, Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T. Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. J Appl Physiol (1985) 2007;103:1772-9. [PMID: 17717124 DOI: 10.1152/japplphysiol.00075.2007] [Cited by in Crossref: 81] [Cited by in F6Publishing: 83] [Article Influence: 5.4] [Reference Citation Analysis]
201 Dempsey B, Turner AJ, Le S, Sun QJ, Bou Farah L, Allen AM, Goodchild AK, McMullan S. Recording, labeling, and transfection of single neurons in deep brain structures. Physiol Rep 2015;3:e12246. [PMID: 25602013 DOI: 10.14814/phy2.12246] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
202 Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle. Neuron 2017;95:1365-1380.e5. [PMID: 28867552 DOI: 10.1016/j.neuron.2017.08.022] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 15.2] [Reference Citation Analysis]
203 Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016;6:1801-50. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
204 Diniz Behn CG, Klerman EB, Mochizuki T, Lin SC, Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. Sleep 2010;33:297-306. [PMID: 20337187 DOI: 10.1093/sleep/33.3.297] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 6.3] [Reference Citation Analysis]
205 Lyamin OI, Lapierre JL, Kosenko PO, Kodama T, Bhagwandin A, Korneva SM, Peever JH, Mukhametov LM, Siegel JM. Monoamine Release during Unihemispheric Sleep and Unihemispheric Waking in the Fur Seal. Sleep 2016;39:625-36. [PMID: 26715233 DOI: 10.5665/sleep.5540] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
206 Thannickal TC, John J, Shan L, Swaab DF, Wu MF, Ramanathan L, McGregor R, Chew KT, Cornford M, Yamanaka A, Inutsuka A, Fronczek R, Lammers GJ, Worley PF, Siegel JM. Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Sci Transl Med 2018;10:eaao4953. [PMID: 29950444 DOI: 10.1126/scitranslmed.aao4953] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 12.3] [Reference Citation Analysis]
207 Blouin AM, Siegel JM. Relation of melanin concentrating hormone levels to sleep, emotion and hypocretin levels. Sleep 2013;36:1777. [PMID: 24293749 DOI: 10.5665/sleep.3194] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
208 Bastianini S, Silvani A, Berteotti C, Lo Martire V, Cohen G, Ohtsu H, Lin JS, Zoccoli G. Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency. PLoS One 2015;10:e0140520. [PMID: 26474479 DOI: 10.1371/journal.pone.0140520] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
209 Vyazovskiy VV. Sleep, recovery, and metaregulation: explaining the benefits of sleep. Nat Sci Sleep 2015;7:171-84. [PMID: 26719733 DOI: 10.2147/NSS.S54036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
210 Weinhold SL, Seeck-Hirschner M, Nowak A, Hallschmid M, Göder R, Baier PC. The effect of intranasal orexin-A (hypocretin-1) on sleep, wakefulness and attention in narcolepsy with cataplexy. Behav Brain Res 2014;262:8-13. [PMID: 24406723 DOI: 10.1016/j.bbr.2013.12.045] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 7.5] [Reference Citation Analysis]
211 Costa A, Monti J, Torterolo P. Hypocretin (orexin) immunoreactivity in the feline midbrain: Relevance for the generation of wakefulness. J Chem Neuroanat 2020;105:101769. [PMID: 32145304 DOI: 10.1016/j.jchemneu.2020.101769] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
212 Karnani MM, Apergis-Schoute J, Adamantidis A, Jensen LT, de Lecea L, Fugger L, Burdakov D. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 2011;72:616-29. [PMID: 22099463 DOI: 10.1016/j.neuron.2011.08.027] [Cited by in Crossref: 99] [Cited by in F6Publishing: 93] [Article Influence: 9.9] [Reference Citation Analysis]
213 Kuwaki T. Orexin (hypocretin) participates in central autonomic regulation during fight-or-flight response. Peptides 2021;139:170530. [PMID: 33741478 DOI: 10.1016/j.peptides.2021.170530] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
214 Wenger Combremont AL, Bayer L, Dupré A, Mühlethaler M, Serafin M. Effects of Hypocretin/Orexin and Major Transmitters of Arousal on Fast Spiking Neurons in Mouse Cortical Layer 6B. Cereb Cortex 2016;26:3553-62. [PMID: 27235100 DOI: 10.1093/cercor/bhw158] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
215 Takakusaki K, Saitoh K, Nonaka S, Okumura T, Miyokawa N, Koyama Y. Neurobiological basis of state-dependent control of motor behaviors. Sleep and Biological Rhythms 2006;4:87-104. [DOI: 10.1111/j.1479-8425.2006.00210.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
216 Terada J, Nakamura A, Zhang W, Yanagisawa M, Kuriyama T, Fukuda Y, Kuwaki T. Ventilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. J Appl Physiol (1985) 2008;104:499-507. [PMID: 18032578 DOI: 10.1152/japplphysiol.00919.2007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 4.2] [Reference Citation Analysis]
217 Van Erum J, Van Dam D, De Deyn PP. Alzheimer's disease: Neurotransmitters of the sleep-wake cycle. Neurosci Biobehav Rev 2019;105:72-80. [PMID: 31377219 DOI: 10.1016/j.neubiorev.2019.07.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
218 Beuckmann CT, Ueno T, Nakagawa M, Suzuki M, Akasofu S. Preclinical in vivo characterization of lemborexant (E2006), a novel dual orexin receptor antagonist for sleep/wake regulation. Sleep 2019;42:zsz076. [PMID: 30923834 DOI: 10.1093/sleep/zsz076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
219 Perogamvros L, Schwartz S. Sleep and emotional functions. Curr Top Behav Neurosci 2015;25:411-31. [PMID: 24385222 DOI: 10.1007/7854_2013_271] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
220 Mochizuki T, Klerman EB, Sakurai T, Scammell TE. Elevated body temperature during sleep in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 2006;291:R533-40. [PMID: 16556901 DOI: 10.1152/ajpregu.00887.2005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 3.5] [Reference Citation Analysis]
221 Liblau RS, Vassalli A, Seifinejad A, Tafti M. Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy. Lancet Neurol 2015;14:318-28. [PMID: 25728441 DOI: 10.1016/S1474-4422(14)70218-2] [Cited by in Crossref: 107] [Cited by in F6Publishing: 34] [Article Influence: 15.3] [Reference Citation Analysis]
222 Dias MB, Li A, Nattie EE. Antagonism of orexin receptor-1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. J Physiol 2009;587:2059-67. [PMID: 19273574 DOI: 10.1113/jphysiol.2008.168260] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 5.1] [Reference Citation Analysis]
223 Jones BE. Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann N Y Acad Sci 2008;1129:26-34. [PMID: 18591466 DOI: 10.1196/annals.1417.026] [Cited by in Crossref: 108] [Cited by in F6Publishing: 103] [Article Influence: 7.7] [Reference Citation Analysis]
224 Malungo IB, Gravett N, Bhagwandin A, Davimes JG, Manger PR. A Preliminary Description of the Sleep-Related Neural Systems in the Brain of the Blue Wildebeest, Connochaetes taurinus. Anat Rec (Hoboken) 2020;303:1977-97. [PMID: 31513360 DOI: 10.1002/ar.24265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
225 Berridge CW, España RA. Hypocretins: waking, arousal, or action? Neuron 2005;46:696-8. [PMID: 15924855 DOI: 10.1016/j.neuron.2005.05.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
226 Antelmi E, Pizza F, Franceschini C, Ferri R, Plazzi G. REM sleep behavior disorder in narcolepsy: A secondary form or an intrinsic feature? Sleep Med Rev 2020;50:101254. [PMID: 31931470 DOI: 10.1016/j.smrv.2019.101254] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
227 Bao L, Si L, Wang Y, Wuyun G, Bo A. Effect of two GABA-ergic drugs on the cognitive functions of rapid eye movement in sleep-deprived and recovered rats. Exp Ther Med 2016;12:1075-84. [PMID: 27446323 DOI: 10.3892/etm.2016.3445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
228 Jones BE. Neurobiology of waking and sleeping. Handb Clin Neurol 2011;98:131-49. [PMID: 21056184 DOI: 10.1016/B978-0-444-52006-7.00009-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
229 Liu M, Blanco-Centurion C, Shiromani PJ. Rewiring brain circuits to block cataplexy in murine models of narcolepsy. Curr Opin Neurobiol 2017;44:110-5. [PMID: 28445807 DOI: 10.1016/j.conb.2017.03.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
230 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
231 Ciriello J, Caverson MM. Hypothalamic orexin-A (hypocretin-1) neuronal projections to the vestibular complex and cerebellum in the rat. Brain Res 2014;1579:20-34. [PMID: 25017945 DOI: 10.1016/j.brainres.2014.07.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
232 Lo Martire V, Silvani A, Bastianini S, Berteotti C, Zoccoli G. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons. PLoS One 2012;7:e47032. [PMID: 23056568 DOI: 10.1371/journal.pone.0047032] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 4.4] [Reference Citation Analysis]
233 Bracey EF, Burdakov D. Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiology & Behavior 2020;222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
234 Mészár Z, Girard F, Saper CB, Celio MR. The lateral hypothalamic parvalbumin-immunoreactive (PV1) nucleus in rodents. J Comp Neurol 2012;520:798-815. [PMID: 22020694 DOI: 10.1002/cne.22789] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
235 Jerath R, Harden K, Crawford M, Barnes VA, Jensen M. Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep. Sleep Medicine 2014;15:279-88. [DOI: 10.1016/j.sleep.2013.10.017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
236 Silvani A, Bastianini S, Berteotti C, Lo Martire V, Zoccoli G. Control of cardiovascular variability during undisturbed wake-sleep behavior in hypocretin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2012;302:R958-64. [PMID: 22357806 DOI: 10.1152/ajpregu.00668.2011] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
237 Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021;234:113370. [PMID: 33621561 DOI: 10.1016/j.physbeh.2021.113370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
238 Yamaguchi K, Futatsuki T, Ushikai J, Kuroki C, Minami T, Kakihana Y, Kuwaki T. Intermittent but not sustained hypoxia activates orexin-containing neurons in mice. Respir Physiol Neurobiol 2015;206:11-4. [PMID: 25462014 DOI: 10.1016/j.resp.2014.11.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
239 Vandi S, Rodolfi S, Pizza F, Moresco M, Antelmi E, Ferri R, Mignot E, Plazzi G, Silvani A. Cardiovascular autonomic dysfunction, altered sleep architecture, and muscle overactivity during nocturnal sleep in pediatric patients with narcolepsy type 1. Sleep 2019;42:zsz169. [DOI: 10.1093/sleep/zsz169] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
240 Weinhold SL, Göder R, Baier PC. Pathway and Effect of Intranasal Orexin. In: Sakurai T, Pandi-perumal S, Monti JM, editors. Orexin and Sleep. Cham: Springer International Publishing; 2015. pp. 339-51. [DOI: 10.1007/978-3-319-23078-8_18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
241 Watson CJ, Soto-Calderon H, Lydic R, Baghdoyan HA. Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness. Sleep 2008;31:453-64. [PMID: 18457232 DOI: 10.1093/sleep/31.4.453] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 2.9] [Reference Citation Analysis]
242 Del Cid-Pellitero E, Jones BE. Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus. Neuroscience 2012;223:269-76. [PMID: 22890079 DOI: 10.1016/j.neuroscience.2012.07.072] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
243 de Lecea L. Hypocretins and the neurobiology of sleep-wake mechanisms. Prog Brain Res 2012;198:15-24. [PMID: 22813967 DOI: 10.1016/B978-0-444-59489-1.00003-3] [Cited by in Crossref: 51] [Cited by in F6Publishing: 27] [Article Influence: 5.1] [Reference Citation Analysis]
244 Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 2014;17:1298-303. [PMID: 25254979 DOI: 10.1038/nn.3810] [Cited by in Crossref: 223] [Cited by in F6Publishing: 207] [Article Influence: 27.9] [Reference Citation Analysis]
245 Mavanji V, Perez-Leighton CE, Kotz CM, Billington CJ, Parthasarathy S, Sinton CM, Teske JA. Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area. Sleep 2015;38:1361-70. [PMID: 25845696 DOI: 10.5665/sleep.4970] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
246 Marston OJ, Williams RH, Canal MM, Samuels RE, Upton N, Piggins HD. Circadian and dark-pulse activation of orexin/hypocretin neurons. Mol Brain 2008;1:19. [PMID: 19055781 DOI: 10.1186/1756-6606-1-19] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 5.8] [Reference Citation Analysis]
247 Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol 2011;2:14. [PMID: 21516258 DOI: 10.3389/fneur.2011.00014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
248 Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 2011;6:e20360. [PMID: 21647372 DOI: 10.1371/journal.pone.0020360] [Cited by in Crossref: 152] [Cited by in F6Publishing: 157] [Article Influence: 13.8] [Reference Citation Analysis]
249 de Lecea L. Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci 2015;25:367-78. [PMID: 25502546 DOI: 10.1007/7854_2014_364] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
250 De Lecea L, Sutcliffe JG. The hypocretins and sleep: The hypocretins and sleep. FEBS Journal 2005;272:5675-88. [DOI: 10.1111/j.1742-4658.2005.04981.x] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 4.4] [Reference Citation Analysis]
251 Perogamvros L, Dang-Vu TT, Desseilles M, Schwartz S. Sleep and dreaming are for important matters. Front Psychol 2013;4:474. [PMID: 23898315 DOI: 10.3389/fpsyg.2013.00474] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
252 Torterolo P, Monti JM, Pandi-perumal SR. Chapter 1 Neuroanatomy and Neuropharmacology of Sleep and Wakefulness. In: Pandi-perumal SR, editor. Synopsis of Sleep Medicine. Apple Academic Press; 2016. pp. 1-22. [DOI: 10.1201/9781315366340-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
253 Kumar S, Szymusiak R, Bashir T, Suntsova N, Rai S, McGinty D, Alam MN. Inactivation of median preoptic nucleus causes c-Fos expression in hypocretin- and serotonin-containing neurons in anesthetized rat. Brain Res 2008;1234:66-77. [PMID: 18722360 DOI: 10.1016/j.brainres.2008.07.115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
254 Gao XB, Hermes G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci 2015;9:142. [PMID: 26539086 DOI: 10.3389/fnsys.2015.00142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
255 Fonseca EM, Vicente MC, Fournier S, Kinkead R, Bícego KC, Gargaglioni LH. Influence of light/dark cycle and orexins on breathing control in green iguanas (Iguana iguana). Sci Rep 2020;10:22105. [PMID: 33328521 DOI: 10.1038/s41598-020-79107-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
256 Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M. Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci. 2010;30:12642-12652. [PMID: 20861370 DOI: 10.1523/jneurosci.2120-10.2010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
257 de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. [PMID: 24575043 DOI: 10.3389/fphar.2014.00016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
258 Duguay D, Bélanger-Nelson E, Mongrain V, Beben A, Khatchadourian A, Cermakian N. Dynein light chain Tctex-type 1 modulates orexin signaling through its interaction with orexin 1 receptor. PLoS One 2011;6:e26430. [PMID: 22028875 DOI: 10.1371/journal.pone.0026430] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
259 Kuhlman SJ. Biological Rhythms Workshop IB: Neurophysiology of SCN Pacemaker Function. Cold Spring Harbor Symposia on Quantitative Biology 2007;72:21-33. [DOI: 10.1101/sqb.2007.72.061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
260 Dhaher R, Hauser SR, Getachew B, Bell RL, McBride WJ, McKinzie DL, Rodd ZA. The Orexin-1 Receptor Antagonist SB-334867 Reduces Alcohol Relapse Drinking, but not Alcohol-Seeking, in Alcohol-Preferring (P) Rats. J Addict Med 2010;4:153-9. [PMID: 20871792 DOI: 10.1097/ADM.0b013e3181bd893f] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
261 Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014;29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
262 González JA, Jensen LT, Doyle SE, Miranda-Anaya M, Menaker M, Fugger L, Bayliss DA, Burdakov D. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 2009;30:57-64. [PMID: 19508695 DOI: 10.1111/j.1460-9568.2009.06789.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
263 Goutagny R, Luppi PH, Salvert D, Lapray D, Gervasoni D, Fort P. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience 2008;152:849-57. [PMID: 18308473 DOI: 10.1016/j.neuroscience.2007.12.014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 3.3] [Reference Citation Analysis]
264 Hassani OK, Henny P, Lee MG, Jones BE. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 2010;32:448-57. [PMID: 20597977 DOI: 10.1111/j.1460-9568.2010.07295.x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 81] [Article Influence: 7.3] [Reference Citation Analysis]
265 Vyazovskiy VV, Cui N, Rodriguez AV, Funk C, Cirelli C, Tononi G. The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice. Sleep 2014;37:1337-47. [PMID: 25083014 DOI: 10.5665/sleep.3926] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
266 Chase MH. A unified survival theory of the functioning of the hypocretinergic system. J Appl Physiol (1985) 2013;115:954-71. [PMID: 23640599 DOI: 10.1152/japplphysiol.00700.2012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
267 Mcginty D, Szymusiak R. Neural Control of Sleep in Mammals. Principles and Practice of Sleep Medicine. Elsevier; 2011. pp. 76-91. [DOI: 10.1016/b978-1-4160-6645-3.00007-4] [Cited by in Crossref: 9] [Article Influence: 0.8] [Reference Citation Analysis]
268 Parsons MP, Hirasawa M. ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J Neurosci 2010;30:8061-70. [PMID: 20554857 DOI: 10.1523/JNEUROSCI.5741-09.2010] [Cited by in Crossref: 75] [Cited by in F6Publishing: 46] [Article Influence: 6.3] [Reference Citation Analysis]
269 Rosenwasser AM. Functional neuroanatomy of sleep and circadian rhythms. Brain Res Rev 2009;61:281-306. [PMID: 19695288 DOI: 10.1016/j.brainresrev.2009.08.001] [Cited by in Crossref: 67] [Cited by in F6Publishing: 46] [Article Influence: 5.2] [Reference Citation Analysis]
270 Cvetkovic-Lopes V, Eggermann E, Uschakov A, Grivel J, Bayer L, Jones BE, Serafin M, Mühlethaler M. Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels. PLoS One 2010;5:e15673. [PMID: 21179559 DOI: 10.1371/journal.pone.0015673] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
271 Morris CJ, Aeschbach D, Scheer FA. Circadian system, sleep and endocrinology. Mol Cell Endocrinol 2012;349:91-104. [PMID: 21939733 DOI: 10.1016/j.mce.2011.09.003] [Cited by in Crossref: 201] [Cited by in F6Publishing: 181] [Article Influence: 18.3] [Reference Citation Analysis]
272 Siegel JM. Clues to the functions of mammalian sleep. Nature. 2005;437:1264-1271. [PMID: 16251951 DOI: 10.1038/nature04285] [Cited by in Crossref: 523] [Cited by in F6Publishing: 412] [Article Influence: 30.8] [Reference Citation Analysis]
273 Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015;6:6266. [PMID: 25695914 DOI: 10.1038/ncomms7266] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 13.0] [Reference Citation Analysis]
274 Lee SH, Dan Y. Neuromodulation of brain states. Neuron 2012;76:209-22. [PMID: 23040816 DOI: 10.1016/j.neuron.2012.09.012] [Cited by in Crossref: 323] [Cited by in F6Publishing: 271] [Article Influence: 32.3] [Reference Citation Analysis]
275 Li JX, Yoshida T, Monk KJ, Katz DB. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics. J Neurosci 2013;33:9462-73. [PMID: 23719813 DOI: 10.1523/JNEUROSCI.3935-12.2013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
276 Fulcher BD, Phillips AJ, Postnova S, Robinson PA. A physiologically based model of orexinergic stabilization of sleep and wake. PLoS One 2014;9:e91982. [PMID: 24651580 DOI: 10.1371/journal.pone.0091982] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
277 Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol 2006;494:845-61. [PMID: 16374809 DOI: 10.1002/cne.20859] [Cited by in Crossref: 383] [Cited by in F6Publishing: 396] [Article Influence: 23.9] [Reference Citation Analysis]
278 Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Sleep 2016;39:369-77. [PMID: 26446125 DOI: 10.5665/sleep.5446] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
279 Takakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol 2008;255 Suppl 4:19-29. [PMID: 18821082 DOI: 10.1007/s00415-008-4004-7] [Cited by in Crossref: 91] [Cited by in F6Publishing: 79] [Article Influence: 6.5] [Reference Citation Analysis]
280 Saito YC, Tsujino N, Abe M, Yamazaki M, Sakimura K, Sakurai T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front Neurosci 2018;12:892. [PMID: 30555297 DOI: 10.3389/fnins.2018.00892] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
281 Scammell TE, Saper CB. Orexin, drugs and motivated behaviors. Nat Neurosci 2005;8:1286-8. [DOI: 10.1038/nn1005-1286] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 2.4] [Reference Citation Analysis]
282 Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021;44:zsaa173. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
283 Horner RL, Peever JH. Brain Circuitry Controlling Sleep and Wakefulness. Continuum (Minneap Minn) 2017;23:955-72. [PMID: 28777170 DOI: 10.1212/CON.0000000000000495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
284 Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol 2008;6:367-78. [PMID: 19587857 DOI: 10.2174/157015908787386050] [Cited by in Crossref: 150] [Cited by in F6Publishing: 123] [Article Influence: 12.5] [Reference Citation Analysis]
285 Kosse C, Schöne C, Bracey E, Burdakov D. Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proc Natl Acad Sci U S A 2017;114:4525-30. [PMID: 28396414 DOI: 10.1073/pnas.1619700114] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 9.4] [Reference Citation Analysis]
286 Jennum P, Frandsen R, Knudsen S. Characteristics of rapid eye movement sleep behavior disorder in narcolepsy: REM sleep behavior and narcolepsy. Sleep and Biological Rhythms 2013;11:65-74. [DOI: 10.1111/j.1479-8425.2012.00556.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
287 Zha X, Xu X. Dissecting the hypothalamic pathways that underlie innate behaviors. Neurosci Bull 2015;31:629-48. [PMID: 26552801 DOI: 10.1007/s12264-015-1564-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
288 Yu L, Zhang XY, Zhang J, Zhu JN, Wang JJ. Orexins excite neurons of the rat cerebellar nucleus interpositus via orexin 2 receptors in vitro. Cerebellum 2010;9:88-95. [PMID: 19921532 DOI: 10.1007/s12311-009-0146-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.2] [Reference Citation Analysis]
289 García-Brito S, Aldavert-Vera L, Huguet G, Kádár E, Segura-Torres P. Orexin-1 receptor blockade differentially affects spatial and visual discrimination memory facilitation by intracranial self-stimulation. Neurobiol Learn Mem 2020;169:107188. [PMID: 32061874 DOI: 10.1016/j.nlm.2020.107188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
290 Blouin AM, Fried I, Wilson CL, Staba RJ, Behnke EJ, Lam HA, Maidment NT, Karlsson KÆ, Lapierre JL, Siegel JM. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun 2013;4:1547. [PMID: 23462990 DOI: 10.1038/ncomms2461] [Cited by in Crossref: 142] [Cited by in F6Publishing: 133] [Article Influence: 15.8] [Reference Citation Analysis]
291 Zeitzer JM, Buckmaster CL, Landolt HP, Lyons DM, Mignot E. Modafinil and γ-hydroxybutyrate have sleep state-specific pharmacological actions on hypocretin-1 physiology in a primate model of human sleep. Behav Pharmacol 2009;20:643-52. [PMID: 19752724 DOI: 10.1097/FBP.0b013e328331b9db] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
292 Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, Yamanaka A. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 2013;255:64-74. [PMID: 23707248 DOI: 10.1016/j.bbr.2013.05.021] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 7.9] [Reference Citation Analysis]
293 Alam MA, Mallick BN. Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep. Neurosci Lett. 2008;439:281-286. [PMID: 18534750 DOI: 10.1016/j.neulet.2008.05.042] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.2] [Reference Citation Analysis]
294 Burgess C, Lai D, Siegel J, Peever J. An endogenous glutamatergic drive onto somatic motoneurons contributes to the stereotypical pattern of muscle tone across the sleep-wake cycle. J Neurosci 2008;28:4649-60. [PMID: 18448642 DOI: 10.1523/JNEUROSCI.0334-08.2008] [Cited by in Crossref: 54] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
295 Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology 2020;45:141-65. [PMID: 31234199 DOI: 10.1038/s41386-019-0446-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
296 Zink AN, Perez-Leighton CE, Kotz CM. The orexin neuropeptide system: physical activity and hypothalamic function throughout the aging process. Front Syst Neurosci 2014;8:211. [PMID: 25408639 DOI: 10.3389/fnsys.2014.00211] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
297 Chowdhury S, Hung CJ, Izawa S, Inutsuka A, Kawamura M, Kawashima T, Bito H, Imayoshi I, Abe M, Sakimura K, Yamanaka A. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. Elife 2019;8:e44927. [PMID: 31159922 DOI: 10.7554/eLife.44927] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
298 Uschakov A, Grivel J, Cvetkovic-Lopes V, Bayer L, Bernheim L, Jones BE, Mühlethaler M, Serafin M. Sleep-deprivation regulates α-2 adrenergic responses of rat hypocretin/orexin neurons. PLoS One 2011;6:e16672. [PMID: 21347440 DOI: 10.1371/journal.pone.0016672] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
299 Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A 2005;102:19168-73. [PMID: 16357203 DOI: 10.1073/pnas.0507480102] [Cited by in Crossref: 354] [Cited by in F6Publishing: 361] [Article Influence: 20.8] [Reference Citation Analysis]
300 Ogawa Y, Kanda T, Vogt K, Yanagisawa M. Anatomical and electrophysiological development of the hypothalamic orexin neurons from embryos to neonates. J Comp Neurol 2017;525:3809-20. [PMID: 28608460 DOI: 10.1002/cne.24261] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
301 Morikawa H, Morrisett RA. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol 2010;91:235-88. [PMID: 20813245 DOI: 10.1016/S0074-7742(10)91008-8] [Cited by in Crossref: 86] [Cited by in F6Publishing: 58] [Article Influence: 7.2] [Reference Citation Analysis]
302 Godden KE, Landry JP, Slepneva N, Migues PV, Pompeiano M. Early expression of hypocretin/orexin in the chick embryo brain. PLoS One 2014;9:e106977. [PMID: 25188307 DOI: 10.1371/journal.pone.0106977] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
303 Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014;7:19-29. [PMID: 26483897 DOI: 10.1016/j.slsci.2014.07.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
304 González JA, Jensen LT, Iordanidou P, Strom M, Fugger L, Burdakov D. Inhibitory Interplay between Orexin Neurons and Eating. Curr Biol 2016;26:2486-91. [PMID: 27546579 DOI: 10.1016/j.cub.2016.07.013] [Cited by in Crossref: 63] [Cited by in F6Publishing: 50] [Article Influence: 10.5] [Reference Citation Analysis]
305 Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013;23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
306 Pereira JC, Andersen ML. The role of thyroid hormone in sleep deprivation. Medical Hypotheses 2014;82:350-5. [DOI: 10.1016/j.mehy.2014.01.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
307 Rolls A. Hypothalamic Control of Sleep in Aging. Neuromol Med 2012;14:139-53. [DOI: 10.1007/s12017-012-8175-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
308 Nishino S, Fujiki N. Neuropeptides as possible targets in sleep disorders. Expert Opin Ther Targets 2007;11:37-59. [PMID: 17150033 DOI: 10.1517/14728222.11.1.37] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
309 Sharko AC, Fadel JR, Kaigler KF, Wilson MA. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction. Physiol Behav 2017;178:93-102. [PMID: 27746261 DOI: 10.1016/j.physbeh.2016.10.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
310 Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S, Shimizu T, Nishino S. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 2009;32:181-7. [PMID: 19238805 DOI: 10.1093/sleep/32.2.181] [Cited by in Crossref: 118] [Cited by in F6Publishing: 85] [Article Influence: 9.1] [Reference Citation Analysis]
311 Teske JA, Mavanji V. Energy expenditure: role of orexin. Vitam Horm 2012;89:91-109. [PMID: 22640610 DOI: 10.1016/B978-0-12-394623-2.00006-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
312 Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007;450:420-4. [PMID: 17943086 DOI: 10.1038/nature06310] [Cited by in Crossref: 798] [Cited by in F6Publishing: 726] [Article Influence: 53.2] [Reference Citation Analysis]
313 España RA, McCormack SL, Mochizuki T, Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 2007;30:1417-25. [PMID: 18041476 DOI: 10.1093/sleep/30.11.1417] [Cited by in Crossref: 61] [Cited by in F6Publishing: 66] [Article Influence: 4.4] [Reference Citation Analysis]
314 Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention. Front Behav Neurosci. 2017;11:10. [PMID: 28197081 DOI: 10.3389/fnbeh.2017.00010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
315 Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, Goto K, Sakurai T. Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 2006;96:284-98. [PMID: 16611835 DOI: 10.1152/jn.01361.2005] [Cited by in Crossref: 79] [Cited by in F6Publishing: 80] [Article Influence: 4.9] [Reference Citation Analysis]
316 Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. Prog Brain Res 2012;199:305-36. [PMID: 22877673 DOI: 10.1016/B978-0-444-59427-3.00018-6] [Cited by in Crossref: 52] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
317 Gaykema RP, Goehler LE. Lipopolysaccharide challenge-induced suppression of Fos in hypothalamic orexin neurons: their potential role in sickness behavior. Brain Behav Immun 2009;23:926-30. [PMID: 19328847 DOI: 10.1016/j.bbi.2009.03.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
318 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
319 Tortorella S, Rodrigo-Angulo ML, Núñez A, Garzón M. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle. Front Neurosci 2013;7:216. [PMID: 24311996 DOI: 10.3389/fnins.2013.00216] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
320 Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010;2:31. [PMID: 20126433 DOI: 10.3389/neuro.02.031.2009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
321 Gonzàlez JA, Reimann F, Burdakov D. Dissociation between sensing and metabolism of glucose in sugar sensing neurones. J Physiol 2009;587:41-8. [PMID: 18981030 DOI: 10.1113/jphysiol.2008.163410] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 5.4] [Reference Citation Analysis]
322 Schmidt FM, Arendt E, Steinmetzer A, Bruegel M, Kratzsch J, Strauß M, Baum P, Hegerl U, Schönknecht P. CSF-hypocretin-1 levels in patients with major depressive disorder compared to healthy controls. Psychiatry Research 2011;190:240-3. [DOI: 10.1016/j.psychres.2011.06.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
323 Boutrel B, Steiner N, Halfon O. The hypocretins and the reward function: what have we learned so far? Front Behav Neurosci 2013;7:59. [PMID: 23781178 DOI: 10.3389/fnbeh.2013.00059] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
324 Scammell TE, Saper CB. Orexins: looking forward to sleep, back at addiction. Nat Med 2007;13:126-8. [PMID: 17290266 DOI: 10.1038/nm0207-126] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
325 Gentile TA, Simmons SJ, Watson MN, Connelly KL, Brailoiu E, Zhang Y, Muschamp JW. Effects of Suvorexant, a Dual Orexin/Hypocretin Receptor Antagonist, on Impulsive Behavior Associated with Cocaine. Neuropsychopharmacology 2018;43:1001-9. [PMID: 28741623 DOI: 10.1038/npp.2017.158] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
326 Muschamp JW, Dominguez JM, Sato SM, Shen RY, Hull EM. A role for hypocretin (orexin) in male sexual behavior. J Neurosci 2007;27:2837-45. [PMID: 17360905 DOI: 10.1523/JNEUROSCI.4121-06.2007] [Cited by in Crossref: 125] [Cited by in F6Publishing: 55] [Article Influence: 8.3] [Reference Citation Analysis]
327 Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2010;68:1023-42. [PMID: 21172606 DOI: 10.1016/j.neuron.2010.11.032] [Cited by in Crossref: 775] [Cited by in F6Publishing: 639] [Article Influence: 70.5] [Reference Citation Analysis]
328 Schöne C, Burdakov D. Glutamate and GABA as rapid effectors of hypothalamic "peptidergic" neurons. Front Behav Neurosci 2012;6:81. [PMID: 23189047 DOI: 10.3389/fnbeh.2012.00081] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
329 Duncan MJ, Franklin KM, Peng X, Yun C, Legan SJ. Circadian rhythm disruption by a novel running wheel: roles of exercise and arousal in blockade of the luteinizing hormone surge. Physiol Behav 2014;131:7-16. [PMID: 24727338 DOI: 10.1016/j.physbeh.2014.04.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
330 Shan L, Dauvilliers Y, Siegel JM. Interactions of the histamine and hypocretin systems in CNS disorders. Nat Rev Neurol 2015;11:401-13. [PMID: 26100750 DOI: 10.1038/nrneurol.2015.99] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 8.0] [Reference Citation Analysis]
331 Chen X, Wang H, Lin Z, Li S, Li Y, Bergen HT, Vrontakis ME, Kirouac GJ. Orexins (hypocretins) contribute to fear and avoidance in rats exposed to a single episode of footshocks. Brain Struct Funct 2014;219:2103-18. [PMID: 23955372 DOI: 10.1007/s00429-013-0626-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 35] [Article Influence: 2.9] [Reference Citation Analysis]
332 de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol Psychiatry 2012;71:1046-52. [PMID: 22440618 DOI: 10.1016/j.biopsych.2012.01.032] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
333 Poryazova R, Werth E, Bassetti CL, Khatami R. Hypersomnia, REM sleep fragmentation and loss of motivation in a patient with hypothalamic lesions. Sleep Med 2009;10:812-3. [PMID: 19185536 DOI: 10.1016/j.sleep.2008.09.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
334 Ishibashi M, Gumenchuk I, Kang B, Steger C, Lynn E, Molina NE, Eisenberg LM, Leonard CS. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons. Front Neurol 2015;6:120. [PMID: 26082752 DOI: 10.3389/fneur.2015.00120] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
335 Rihel J, Prober DA, Schier AF. Monitoring Sleep and Arousal in Zebrafish. The Zebrafish: Cellular and Developmental Biology, Part A. Elsevier; 2010. pp. 281-94. [DOI: 10.1016/b978-0-12-384892-5.00011-6] [Cited by in Crossref: 43] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
336 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
337 Messina A, Bitetti I, Precenzano F, Iacono D, Messina G, Roccella M, Parisi L, Salerno M, Valenzano A, Maltese A, Salerno M, Sessa F, Albano GD, Marotta R, Villano I, Marsala G, Zammit C, Lavano F, Monda M, Cibelli G, Lavano SM, Gallai B, Toraldo R, Monda V, Carotenuto M. Non-Rapid Eye Movement Sleep Parasomnias and Migraine: A Role of Orexinergic Projections. Front Neurol 2018;9:95. [PMID: 29541053 DOI: 10.3389/fneur.2018.00095] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
338 Willie JT, Takahira H, Shibahara M, Hara J, Nomiyama M, Yanagisawa M, Sakurai T. Ectopic overexpression of orexin alters sleep/wakefulness states and muscle tone regulation during REM sleep in mice. J Mol Neurosci 2011;43:155-61. [PMID: 20711757 DOI: 10.1007/s12031-010-9437-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
339 Deurveilher S, Lo H, Murphy JA, Burns J, Semba K. Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats. J Comp Neurol 2006;498:667-89. [DOI: 10.1002/cne.21084] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 3.1] [Reference Citation Analysis]
340 Mogavero MP, Silvani A, DelRosso LM, Salemi M, Ferri R. Focus on the Complex Interconnection between Cancer, Narcolepsy and Other Neurodegenerative Diseases: A Possible Case of Orexin-Dependent Inverse Comorbidity. Cancers (Basel) 2021;13:2612. [PMID: 34073579 DOI: 10.3390/cancers13112612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
341 Kosse C, Gonzalez A, Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol (Oxf) 2015;213:7-18. [PMID: 25131833 DOI: 10.1111/apha.12360] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
342 Sherman D, Fuller PM, Marcus J, Yu J, Zhang P, Chamberlin NL, Saper CB, Lu J. Anatomical Location of the Mesencephalic Locomotor Region and Its Possible Role in Locomotion, Posture, Cataplexy, and Parkinsonism. Front Neurol 2015;6:140. [PMID: 26157418 DOI: 10.3389/fneur.2015.00140] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 7.4] [Reference Citation Analysis]
343 Sakurai T. Orexin deficiency and narcolepsy. Curr Opin Neurobiol 2013;23:760-6. [PMID: 23663890 DOI: 10.1016/j.conb.2013.04.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
344 Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
345 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
346 Pałasz A, Lapray D, Peyron C, Rojczyk-Gołębiewska E, Skowronek R, Markowski G, Czajkowska B, Krzystanek M, Wiaderkiewicz R. Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders. Int J Neuropsychopharmacol 2014;17:157-68. [PMID: 23702225 DOI: 10.1017/S1461145713000552] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
347 Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN Biochem 2012;2012:262941. [PMID: 25969754 DOI: 10.5402/2012/262941] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
348 Gao HR, Zhuang QX, Zhang YX, Chen ZP, Li B, Zhang XY, Zhong YT, Wang JJ, Zhu JN. Orexin Directly Enhances the Excitability of Globus Pallidus Internus Neurons in Rat by Co-activating OX1 and OX2 Receptors. Neurosci Bull 2017;33:365-72. [PMID: 28389870 DOI: 10.1007/s12264-017-0127-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
349 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
350 Korotkova T, Ponomarenko A, Monaghan CK, Poulter SL, Cacucci F, Wills T, Hasselmo ME, Lever C. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience & Biobehavioral Reviews 2018;85:65-80. [DOI: 10.1016/j.neubiorev.2017.09.004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 13.3] [Reference Citation Analysis]
351 Baumann CR, Bassetti CL. Hypocretins (orexins) and sleep–wake disorders. The Lancet Neurology 2005;4:673-82. [DOI: 10.1016/s1474-4422(05)70196-4] [Cited by in Crossref: 102] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
352 de Lecea L. A decade of hypocretins: past, present and future of the neurobiology of arousal. Acta Physiol (Oxf) 2010;198:203-8. [PMID: 19473132 DOI: 10.1111/j.1748-1716.2009.02004.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
353 Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021;15:644313. [PMID: 33776641 DOI: 10.3389/fnins.2021.644313] [Reference Citation Analysis]
354 Ahmadi-soleimani SM, Mianbandi V, Azizi H, Azhdari-zarmehri H, Ghaemi-jandabi M, Abbasi-mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behavioural Brain Research 2020;391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
355 Li SB, Giardino WJ, de Lecea L. Hypocretins and Arousal. Curr Top Behav Neurosci 2017;33:93-104. [PMID: 28012091 DOI: 10.1007/7854_2016_58] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
356 Michinaga S, Hisatsune A, Isohama Y, Katsuki H. Inhibition of neural activity depletes orexin from rat hypothalamic slice culture. J Neurosci Res 2010;88:214-21. [PMID: 19610104 DOI: 10.1002/jnr.22183] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
357 Jiang J, Zou G, Liu J, Zhou S, Xu J, Sun H, Zou Q, Gao JH. Functional connectivity of the human hypothalamus during wakefulness and nonrapid eye movement sleep. Hum Brain Mapp 2021;42:3667-79. [PMID: 33960583 DOI: 10.1002/hbm.25461] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
358 D'Anna KL, Gammie SC. Hypocretin-1 dose-dependently modulates maternal behaviour in mice. J Neuroendocrinol 2006;18:553-66. [PMID: 16867176 DOI: 10.1111/j.1365-2826.2006.01448.x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 2.0] [Reference Citation Analysis]
359 Pérez-morales M, De La Herrán-arita AK, Méndez-díaz M, Ruiz-contreras AE, Drucker-colín R, Prospéro-garcía O. 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats. Pharmacology Biochemistry and Behavior 2013;108:1-7. [DOI: 10.1016/j.pbb.2013.04.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
360 Kripke DF. Is suvorexant a better choice than alternative hypnotics? F1000Res 2015;4:456. [PMID: 26594338 DOI: 10.12688/f1000research.6845.1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
361 Deadwyler SA, Porrino L, Siegel JM, Hampson RE. Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 2007;27:14239-47. [PMID: 18160631 DOI: 10.1523/JNEUROSCI.3878-07.2007] [Cited by in Crossref: 186] [Cited by in F6Publishing: 78] [Article Influence: 13.3] [Reference Citation Analysis]
362 Liu ZW, Gao XB. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 2007;97:837-48. [PMID: 17093123 DOI: 10.1152/jn.00873.2006] [Cited by in Crossref: 121] [Cited by in F6Publishing: 108] [Article Influence: 7.6] [Reference Citation Analysis]
363 Fenik VB, Rukhadze I, Kubin L. Antagonism of alpha1-adrenergic and serotonergic receptors in the hypoglossal motor nucleus does not prevent motoneuronal activation elicited from the posterior hypothalamus. Neurosci Lett 2009;462:80-4. [PMID: 19573578 DOI: 10.1016/j.neulet.2009.06.083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
364 Zhou WL, Gao XB, Picciotto MR. Acetylcholine Acts through Nicotinic Receptors to Enhance the Firing Rate of a Subset of Hypocretin Neurons in the Mouse Hypothalamus through Distinct Presynaptic and Postsynaptic Mechanisms.. eNeuro 2015;2:e0052. [PMID: 26322330 DOI: 10.1523/ENEURO.0052-14.2015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
365 Tang H, Zhu Q, Li W, Qin S, Gong Y, Wang H, Shioda S, Li S, Huang J, Liu B, Fang Y, Liu Y, Wang S, Guo Y, Xia Q, Guo Y, Xu Z. Neurophysiology and Treatment of Disorders of Consciousness Induced by Traumatic Brain Injury: Orexin Signaling as a Potential Therapeutic Target. Curr Pharm Des 2019;25:4208-20. [PMID: 31663471 DOI: 10.2174/1381612825666191029101830] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
366 Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, de Lecea L. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022;375:eabh3021. [PMID: 35201886 DOI: 10.1126/science.abh3021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
367 James MH, Stopper CM, Zimmer BA, Koll NE, Bowrey HE, Aston-Jones G. Increased Number and Activity of a Lateral Subpopulation of Hypothalamic Orexin/Hypocretin Neurons Underlies the Expression of an Addicted State in Rats. Biol Psychiatry 2019;85:925-35. [PMID: 30219208 DOI: 10.1016/j.biopsych.2018.07.022] [Cited by in Crossref: 47] [Cited by in F6Publishing: 56] [Article Influence: 11.8] [Reference Citation Analysis]
368 Rodrigues LTC, da Silva EN, Horta-Júnior JAC, Gargaglioni LH, Dias MB. Glutamate metabotropic receptors in the lateral hypothalamus/perifornical area reduce the CO2 chemoreflex. Respir Physiol Neurobiol 2019;260:122-30. [PMID: 30471436 DOI: 10.1016/j.resp.2018.11.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
369 Seigneur E, de Lecea L. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery 2020;8:100070. [DOI: 10.1016/j.medidd.2020.100070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
370 Behn CG, Brown EN, Scammell TE, Kopell NJ. Mathematical model of network dynamics governing mouse sleep-wake behavior. J Neurophysiol 2007;97:3828-40. [PMID: 17409167 DOI: 10.1152/jn.01184.2006] [Cited by in Crossref: 80] [Cited by in F6Publishing: 65] [Article Influence: 5.3] [Reference Citation Analysis]
371 Li SB, Nevárez N, Giardino WJ, de Lecea L. Optical probing of orexin/hypocretin receptor antagonists. Sleep 2018;41. [PMID: 30060151 DOI: 10.1093/sleep/zsy141] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
372 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
373 McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). Handb Clin Neurol 2021;180:359-74. [PMID: 34225941 DOI: 10.1016/B978-0-12-820107-7.00022-7] [Reference Citation Analysis]
374 Bernard R, Lydic R, Baghdoyan HA. Hypocretin (orexin) receptor subtypes differentially enhance acetylcholine release and activate g protein subtypes in rat pontine reticular formation. J Pharmacol Exp Ther 2006;317:163-71. [PMID: 16352704 DOI: 10.1124/jpet.105.097071] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
375 Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ. Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology (Berl) 2010;212:251-65. [PMID: 20645079 DOI: 10.1007/s00213-010-1948-y] [Cited by in Crossref: 113] [Cited by in F6Publishing: 113] [Article Influence: 9.4] [Reference Citation Analysis]
376 Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci 2008;1129:275-86. [PMID: 18591488 DOI: 10.1196/annals.1417.027] [Cited by in Crossref: 173] [Cited by in F6Publishing: 158] [Article Influence: 12.4] [Reference Citation Analysis]
377 Kuwaki T, Li A, Nattie E. State-dependent central chemoreception: a role of orexin. Respir Physiol Neurobiol 2010;173:223-9. [PMID: 20170755 DOI: 10.1016/j.resp.2010.02.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
378 Meletti S, Vaudano AE, Pizza F, Ruggieri A, Vandi S, Teggi A, Franceschini C, Benuzzi F, Nichelli PF, Plazzi G. The Brain Correlates of Laugh and Cataplexy in Childhood Narcolepsy. J Neurosci 2015;35:11583-94. [PMID: 26290235 DOI: 10.1523/JNEUROSCI.0840-15.2015] [Cited by in Crossref: 41] [Cited by in F6Publishing: 15] [Article Influence: 5.9] [Reference Citation Analysis]
379 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
380 Zegarra‐valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez‐rachadell L, Nuñez A, Torres Aleman I. Insulin‐like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB j 2020;34:15975-90. [DOI: 10.1096/fj.202001281rr] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
381 Peyron C, Sapin E, Leger L, Luppi P, Fort P. Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides 2009;30:2052-9. [DOI: 10.1016/j.peptides.2009.07.022] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 4.6] [Reference Citation Analysis]
382 Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007;8:171-81. [DOI: 10.1038/nrn2092] [Cited by in Crossref: 763] [Cited by in F6Publishing: 716] [Article Influence: 50.9] [Reference Citation Analysis]
383 Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017;118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
384 Scharf MT, Kelz MB. Sleep and Anesthesia Interactions: A Pharmacological Appraisal. Curr Anesthesiol Rep 2013;3:1-9. [PMID: 23440738 DOI: 10.1007/s40140-012-0007-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
385 Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C. A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 2010;5:e11766. [PMID: 20668680 DOI: 10.1371/journal.pone.0011766] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 4.7] [Reference Citation Analysis]
386 Bastianini S, Silvani A, Berteotti C, Elghozi JL, Franzini C, Lenzi P, Lo Martire V, Zoccoli G. Sleep related changes in blood pressure in hypocretin-deficient narcoleptic mice. Sleep 2011;34:213-8. [PMID: 21286242 DOI: 10.1093/sleep/34.2.213] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 5.2] [Reference Citation Analysis]
387 Kostin A, Mcginty D, Szymusiak R, Alam M. Mechanisms mediating effects of nitric oxide on perifornical lateral hypothalamic neurons. Neuroscience 2012;220:179-90. [DOI: 10.1016/j.neuroscience.2012.06.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
388 Northeast RC, Huang Y, McKillop LE, Bechtold DA, Peirson SN, Piggins HD, Vyazovskiy VV. Sleep homeostasis during daytime food entrainment in mice. Sleep 2019;42:zsz157. [PMID: 31329251 DOI: 10.1093/sleep/zsz157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
389 Chen X, Li S, Kirouac GJ. Blocking of corticotrophin releasing factor receptor-1 during footshock attenuates context fear but not the upregulation of prepro-orexin mRNA in rats. Pharmacol Biochem Behav 2014;120:1-6. [PMID: 24491435 DOI: 10.1016/j.pbb.2014.01.013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
390 Schöne C, Burdakov D. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain. Curr Top Behav Neurosci 2017;33:51-74. [PMID: 27830577 DOI: 10.1007/7854_2016_45] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
391 Hondo M, Furutani N, Yamasaki M, Watanabe M, Sakurai T. Orexin neurons receive glycinergic innervations. PLoS One 2011;6:e25076. [PMID: 21949857 DOI: 10.1371/journal.pone.0025076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
392 Blanco-Centurion CA, Shiromani A, Winston E, Shiromani PJ. Effects of hypocretin-1 in 192-IgG-saporin-lesioned rats. Eur J Neurosci 2006;24:2084-8. [PMID: 17067305 DOI: 10.1111/j.1460-9568.2006.05074.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
393 Kaur S, Thankachan S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Shiromani PJ. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res 2008;1205:47-54. [PMID: 18343358 DOI: 10.1016/j.brainres.2008.02.026] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
394 Hong EY, Yoon YS, Lee HS. Differential distribution of melanin-concentrating hormone (MCH)- and hypocretin (Hcrt)-immunoreactive neurons projecting to the mesopontine cholinergic complex in the rat. Brain Res 2011;1424:20-31. [PMID: 22015351 DOI: 10.1016/j.brainres.2011.09.051] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
395 Nishino S. Hypothalamus, hypocretins/orexin, and vigilance control. Sleep Disorders. Elsevier; 2011. pp. 765-82. [DOI: 10.1016/b978-0-444-52007-4.00006-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
396 Chowdhury S, Yamanaka A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci Rep. 2016;6:36039. [PMID: 27824065 DOI: 10.1038/srep36039] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
397 McGregor R, Shan L, Wu MF, Siegel JM. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss. PLoS One 2017;12:e0178573. [PMID: 28570646 DOI: 10.1371/journal.pone.0178573] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
398 Chen L, Thakkar MM, Winston S, Bolortuya Y, Basheer R, McCarley RW. REM sleep changes in rats induced by siRNA-mediated orexin knockdown. Eur J Neurosci 2006;24:2039-48. [PMID: 17067300 DOI: 10.1111/j.1460-9568.2006.05058.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 3.1] [Reference Citation Analysis]
399 Chung S, Civelli O. Orphan neuropeptides. Neuropeptides 2006;40:233-43. [DOI: 10.1016/j.npep.2006.04.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
400 Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 2006;148:752-9. [PMID: 16751790 DOI: 10.1038/sj.bjp.0706789] [Cited by in Crossref: 283] [Cited by in F6Publishing: 279] [Article Influence: 17.7] [Reference Citation Analysis]
401 Nishino S. Clinical and neurobiological aspects of narcolepsy. Sleep Med 2007;8:373-99. [PMID: 17470414 DOI: 10.1016/j.sleep.2007.03.008] [Cited by in Crossref: 122] [Cited by in F6Publishing: 85] [Article Influence: 8.1] [Reference Citation Analysis]
402 Martin T, Dauvilliers Y, Koumar OC, Bouet V, Freret T, Besnard S, Dauphin F, Bessot N. Dual orexin receptor antagonist induces changes in core body temperature in rats after exercise. Sci Rep 2019;9:18432. [PMID: 31804545 DOI: 10.1038/s41598-019-54826-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
403 Singh C, Oikonomou G, Prober DA. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. Elife 2015;4:e07000. [PMID: 26374985 DOI: 10.7554/eLife.07000] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 8.7] [Reference Citation Analysis]
404 Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Reference Citation Analysis]
405 Haas HL, Lin J. Waking with the hypothalamus. Pflugers Arch - Eur J Physiol 2012;463:31-42. [DOI: 10.1007/s00424-011-0996-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
406 Bonnavion P, de Lecea L. Hypocretins in the Control of Sleep and Wakefulness. Curr Neurol Neurosci Rep 2010;10:174-9. [DOI: 10.1007/s11910-010-0101-y] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 4.4] [Reference Citation Analysis]
407 Mehta R, Khanday MA, Mallick BN. REM sleep loss associated changes in orexin-A levels in discrete brain areas in rats. Neurosci Lett 2015;590:62-7. [PMID: 25637698 DOI: 10.1016/j.neulet.2015.01.067] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
408 Xi MC, Chase MH. Neuronal mechanisms of active (rapid eye movement) sleep induced by microinjections of hypocretin into the nucleus pontis oralis of the cat. Neuroscience 2006;140:335-42. [PMID: 16533574 DOI: 10.1016/j.neuroscience.2006.01.032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.6] [Reference Citation Analysis]
409 Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021;44:zsaa268. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
410 Blanco-Centurion C, Luo S, Spergel DJ, Vidal-Ortiz A, Oprisan SA, Van den Pol AN, Liu M, Shiromani PJ. Dynamic Network Activation of Hypothalamic MCH Neurons in REM Sleep and Exploratory Behavior. J Neurosci 2019;39:4986-98. [PMID: 31036764 DOI: 10.1523/JNEUROSCI.0305-19.2019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
411 Kuwaki T, Zhang W. Orexin neurons and emotional stress. Vitam Horm 2012;89:135-58. [PMID: 22640612 DOI: 10.1016/B978-0-12-394623-2.00008-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
412 Kostin A, McGinty D, Szymusiak R, Alam MN. Sleep-wake and diurnal modulation of nitric oxide in the perifornical-lateral hypothalamic area: real-time detection in freely behaving rats. Neuroscience 2013;254:275-84. [PMID: 24056193 DOI: 10.1016/j.neuroscience.2013.09.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
413 Li FW, Deurveilher S, Semba K. Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats. Behav Brain Res 2011;224:376-86. [PMID: 21723327 DOI: 10.1016/j.bbr.2011.06.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 0.6] [Reference Citation Analysis]
414 Schöpf V, Fischmeister FP, Windischberger C, Gerstl F, Wolzt M, Karlsson KÆ, Moser E. Effects of individual glucose levels on the neuronal correlates of emotions. Front Hum Neurosci 2013;7:212. [PMID: 23734117 DOI: 10.3389/fnhum.2013.00212] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
415 Fadel J, Frederick-Duus D. Orexin/hypocretin modulation of the basal forebrain cholinergic system: insights from in vivo microdialysis studies. Pharmacol Biochem Behav 2008;90:156-62. [PMID: 18281084 DOI: 10.1016/j.pbb.2008.01.008] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.4] [Reference Citation Analysis]
416 Jego S, Salvert D, Renouard L, Mori M, Goutagny R, Luppi PH, Fort P. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. PLoS One 2012;7:e52525. [PMID: 23300698 DOI: 10.1371/journal.pone.0052525] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
417 Kostin A, Rai S, Kumar S, Szymusiak R, McGinty D, Alam MN. Nitric oxide production in the perifornical-lateral hypothalamic area and its influences on the modulation of perifornical-lateral hypothalamic area neurons. Neuroscience 2011;179:159-69. [PMID: 21277356 DOI: 10.1016/j.neuroscience.2011.01.052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
418 Tan L, Wang N, Gu Z, Zhu J, Liu C, Xu Z. Arousing Effects of Electroacupuncture on the "Shuigou Point" in Rats with Disorder of Consciousness after Traumatic Brain Injury. Evid Based Complement Alternat Med 2021;2021:6611461. [PMID: 33959185 DOI: 10.1155/2021/6611461] [Reference Citation Analysis]
419 Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Hypoxia and hypercapnia inhibit hypothalamic orexin neurons in rats. J Neurophysiol 2016;116:2250-9. [PMID: 27559138 DOI: 10.1152/jn.00196.2016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
420 de Lecea L, Jones BE, Boutrel B, Borgland SL, Nishino S, Bubser M, DiLeone R. Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 2006;26:10372-5. [PMID: 17035520 DOI: 10.1523/JNEUROSCI.3118-06.2006] [Cited by in Crossref: 61] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
421 Ohno K, Sakurai T. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Front Neuroendocrinol 2008;29:70-87. [PMID: 17910982 DOI: 10.1016/j.yfrne.2007.08.001] [Cited by in Crossref: 178] [Cited by in F6Publishing: 162] [Article Influence: 11.9] [Reference Citation Analysis]
422 Siegel JM, Boehmer LN. Narcolepsy and the hypocretin system--where motion meets emotion. Nat Clin Pract Neurol 2006;2:548-56. [PMID: 16990828 DOI: 10.1038/ncpneuro0300] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 3.3] [Reference Citation Analysis]
423 Yamashita A, Moriya S, Nishi R, Kaminosono J, Yamanaka A, Kuwaki T. Aversive emotion rapidly activates orexin neurons and increases heart rate in freely moving mice. Mol Brain 2021;14:104. [PMID: 34193206 DOI: 10.1186/s13041-021-00818-2] [Reference Citation Analysis]
424 Cid-pellitero ED, Garzón M. Hypocretin1/OrexinA-containing axons innervate locus coeruleus neurons that project to the Rat medial prefrontal cortex. Implication in the sleep-wakefulness cycle and cortical activation. Synapse 2011;65:843-57. [DOI: 10.1002/syn.20912] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.2] [Reference Citation Analysis]
425 Kantor S, Mochizuki T, Janisiewicz AM, Clark E, Nishino S, Scammell TE. Orexin neurons are necessary for the circadian control of REM sleep. Sleep 2009;32:1127-34. [PMID: 19750917 DOI: 10.1093/sleep/32.9.1127] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 5.0] [Reference Citation Analysis]
426 Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 2006;26:8092-100. [PMID: 16885223 DOI: 10.1523/JNEUROSCI.2181-06.2006] [Cited by in Crossref: 109] [Cited by in F6Publishing: 56] [Article Influence: 6.8] [Reference Citation Analysis]
427 Uschakov A, Gong H, Mcginty D, Szymusiak R. Sleep-active neurons in the preoptic area project to the hypothalamic paraventricular nucleus and perifornical lateral hypothalamus. European Journal of Neuroscience 2006;23:3284-96. [DOI: 10.1111/j.1460-9568.2006.04860.x] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 3.1] [Reference Citation Analysis]
428 Li SB, Borniger JC, Yamaguchi H, Hédou J, Gaudilliere B, de Lecea L. Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression. Sci Adv 2020;6:eabc2590. [PMID: 32917689 DOI: 10.1126/sciadv.abc2590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
429 Mosqueiro T, de Lecea L, Huerta R. Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission. New J Phys 2014;16:115010. [PMID: 25598695 DOI: 10.1088/1367-2630/16/11/115010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
430 Fulcher BD, Phillips AJ, Robinson PA. Modeling the impact of impulsive stimuli on sleep-wake dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 2008;78:051920. [PMID: 19113168 DOI: 10.1103/PhysRevE.78.051920] [Cited by in Crossref: 34] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
431 Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2020;43:zsz296. [PMID: 31919524 DOI: 10.1093/sleep/zsz296] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
432 Dias MB, Li A, Nattie E. The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle. Respir Physiol Neurobiol 2010;170:96-102. [PMID: 19995618 DOI: 10.1016/j.resp.2009.12.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 3.5] [Reference Citation Analysis]
433 Florenzano F, Viscomi MT, Mercaldo V, Longone P, Bernardi G, Bagni C, Molinari M, Carrive P. P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J Comp Neurol 2006;498:58-67. [PMID: 16856176 DOI: 10.1002/cne.21013] [Cited by in Crossref: 85] [Cited by in F6Publishing: 73] [Article Influence: 5.3] [Reference Citation Analysis]
434 Murillo-Rodriguez E, Liu M, Blanco-Centurion C, Shiromani PJ. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci 2008;28:1191-8. [PMID: 18783368 DOI: 10.1111/j.1460-9568.2008.06424.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
435 Thompson JL, Borgland SL. A role for hypocretin/orexin in motivation. Behav Brain Res 2011;217:446-53. [PMID: 20920531 DOI: 10.1016/j.bbr.2010.09.028] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 6.2] [Reference Citation Analysis]
436 Saito YC, Tsujino N, Abe M, Yamazaki M, Sakimura K, Sakurai T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front Neurosci 2018;12:892. [PMID: 30555297 DOI: 10.3389/fnins.2018.00892] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
437 Thakkar MM, Winston S, McCarley RW. Effect of microdialysis perfusion of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol in the perifornical hypothalamus on sleep-wakefulness: role of delta-subunit containing extrasynaptic GABAA receptors. Neuroscience 2008;153:551-5. [PMID: 18406065 DOI: 10.1016/j.neuroscience.2008.02.053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
438 Gompf HS, Aston-Jones G. Role of orexin input in the diurnal rhythm of locus coeruleus impulse activity. Brain Res 2008;1224:43-52. [PMID: 18614159 DOI: 10.1016/j.brainres.2008.05.060] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 3.9] [Reference Citation Analysis]
439 Vicente MC, Dias MB, Fonseca EM, Bícego KC, Gargaglioni LH. Orexinergic system in the locus coeruleus modulates the CO2 ventilatory response. Pflugers Arch - Eur J Physiol 2016;468:763-74. [DOI: 10.1007/s00424-016-1793-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
440 Tsuneki H, Wada T, Sasaoka T. Role of orexin in the regulation of glucose homeostasis. Acta Physiologica 2010;198:335-48. [DOI: 10.1111/j.1748-1716.2009.02008.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
441 Uschakov A, Gong H, McGinty D, Szymusiak R. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience 2007;150:104-20. [PMID: 17928156 DOI: 10.1016/j.neuroscience.2007.05.055] [Cited by in Crossref: 83] [Cited by in F6Publishing: 82] [Article Influence: 5.5] [Reference Citation Analysis]
442 Dauvilliers Y, Schenck CH, Postuma RB, Iranzo A, Luppi PH, Plazzi G, Montplaisir J, Boeve B. REM sleep behaviour disorder. Nat Rev Dis Primers. 2018;4:19. [PMID: 30166532 DOI: 10.1038/s41572-018-0016-5] [Cited by in Crossref: 100] [Cited by in F6Publishing: 77] [Article Influence: 25.0] [Reference Citation Analysis]
443 Huang SC, Li TL, Lee YH, Dai YE, Chen YC, Hwang LL. Role of the orexin 2 receptor in palatable-food consumption-associated cardiovascular reactivity in spontaneously hypertensive rats. Sci Rep 2018;8:12703. [PMID: 30140065 DOI: 10.1038/s41598-018-30970-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
444 Kumar S, Szymusiak R, Bashir T, Rai S, McGinty D, Alam MN. Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat. Eur J Neurosci 2007;25:201-12. [PMID: 17241281 DOI: 10.1111/j.1460-9568.2006.05268.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
445 Stein T, Tonussi CR. Involvement of the tuberomammillary nucleus of the hypothalamus in the modulation of nociception and joint edema in a model of monoarthritis. Life Sci 2020;262:118521. [PMID: 33022280 DOI: 10.1016/j.lfs.2020.118521] [Reference Citation Analysis]
446 Choudhary RC, Khanday MA, Mitra A, Mallick BN. Perifornical orexinergic neurons modulate REM sleep by influencing locus coeruleus neurons in rats. Neuroscience. 2014;279:33-43. [PMID: 25168734 DOI: 10.1016/j.neuroscience.2014.08.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
447 de Lecea L, Bourgin P. Neuropeptide interactions and REM sleep: A role for Urotensin II? Peptides 2008;29:845-51. [DOI: 10.1016/j.peptides.2008.02.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
448 Laperchia C, Imperatore R, Azeez IA, Del Gallo F, Bertini G, Grassi-Zucconi G, Cristino L, Bentivoglio M. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization. Brain Struct Funct 2017;222:3847-59. [PMID: 28669028 DOI: 10.1007/s00429-017-1466-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
449 Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021;145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Reference Citation Analysis]
450 Krone L, Frase L, Piosczyk H, Selhausen P, Zittel S, Jahn F, Kuhn M, Feige B, Mainberger F, Klöppel S, Riemann D, Spiegelhalder K, Baglioni C, Sterr A, Nissen C. Top-down control of arousal and sleep: Fundamentals and clinical implications. Sleep Med Rev 2017;31:17-24. [PMID: 26883160 DOI: 10.1016/j.smrv.2015.12.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
451 Honjoh S, Sasai S, Schiereck SS, Nagai H, Tononi G, Cirelli C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 2018;9:2100. [PMID: 29844415 DOI: 10.1038/s41467-018-04497-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 8.8] [Reference Citation Analysis]
452 Saper CB. The neurobiology of sleep. Continuum (Minneap Minn) 2013;19:19-31. [PMID: 23385692 DOI: 10.1212/01.CON.0000427215.07715.73] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
453 Mieda M, Sakurai T. Orexin (hypocretin) receptor agonists and antagonists for treatment of sleep disorders. Rationale for development and current status. CNS Drugs 2013;27:83-90. [PMID: 23359095 DOI: 10.1007/s40263-012-0036-8] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 6.9] [Reference Citation Analysis]
454 Saper CB. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res 2006;153:243-52. [PMID: 16876579 DOI: 10.1016/S0079-6123(06)53014-6] [Cited by in Crossref: 120] [Cited by in F6Publishing: 48] [Article Influence: 7.5] [Reference Citation Analysis]
455 Del Cid-Pellitero E, Garzón M. Hypocretin1/orexinA-immunoreactive axons form few synaptic contacts on rat ventral tegmental area neurons that project to the medial prefrontal cortex. BMC Neurosci 2014;15:105. [PMID: 25194917 DOI: 10.1186/1471-2202-15-105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
456 Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 157-96. [DOI: 10.1007/7854_2016_46] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
457 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
458 Aitta-Aho T, Pappa E, Burdakov D, Apergis-Schoute J. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice. Neurobiol Learn Mem 2016;136:183-8. [PMID: 27746379 DOI: 10.1016/j.nlm.2016.10.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
459 Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 2013;16:1637-43. [PMID: 24056699 DOI: 10.1038/nn.3522] [Cited by in Crossref: 254] [Cited by in F6Publishing: 225] [Article Influence: 28.2] [Reference Citation Analysis]
460 Schmeichel BE, Berridge CW. Wake-promoting actions of noradrenergic α1 - and β-receptors within the lateral hypothalamic area. Eur J Neurosci 2013;37:891-900. [PMID: 23252935 DOI: 10.1111/ejn.12084] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
461 Brundin L, Petersén Å, Björkqvist M, Träskman-bendz L. Orexin and psychiatric symptoms in suicide attempters. Journal of Affective Disorders 2007;100:259-63. [DOI: 10.1016/j.jad.2006.10.019] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 3.4] [Reference Citation Analysis]
462 Burdakov D, Peleg-raibstein D. The hypothalamus as a primary coordinator of memory updating. Physiology & Behavior 2020;223:112988. [DOI: 10.1016/j.physbeh.2020.112988] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
463 Webb IC, Patton DF, Hamson DK, Mistlberger RE. Neural correlates of arousal-induced circadian clock resetting: hypocretin/orexin and the intergeniculate leaflet. Eur J Neurosci 2008;27:828-35. [DOI: 10.1111/j.1460-9568.2008.06074.x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]
464 Burgess C, Peever J. A Noradrenergic Mechanism Functions to Couple Motor Behavior with Arousal State. Current Biology 2013;23:1719-25. [DOI: 10.1016/j.cub.2013.07.014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
465 Li A, Nattie E. Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle. J Physiol 2010;588:2935-44. [PMID: 20547681 DOI: 10.1113/jphysiol.2010.191288] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 4.8] [Reference Citation Analysis]
466 Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Research 2020;1731:146028. [DOI: 10.1016/j.brainres.2018.11.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
467 Nattie E, Li A. Respiration and autonomic regulation and orexin. Prog Brain Res 2012;198:25-46. [PMID: 22813968 DOI: 10.1016/B978-0-444-59489-1.00004-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
468 Tabuchi S, Tsunematsu T, Kilduff TS, Sugio S, Xu M, Tanaka KF, Takahashi S, Tominaga M, Yamanaka A. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness. Sleep 2013;36:1391-404. [PMID: 23997373 DOI: 10.5665/sleep.2972] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
469 Niu J, Yokota S, Tsumori T, Qin Y, Yasui Y. Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat. Brain Research 2010;1358:110-22. [DOI: 10.1016/j.brainres.2010.08.056] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]
470 Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014;37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
471 Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018;4:44-9. [PMID: 30155524 DOI: 10.1016/j.ibror.2018.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
472 Briggs C, Bowes SC, Semba K, Hirasawa M. Sleep deprivation-induced pre- and postsynaptic modulation of orexin neurons. Neuropharmacology 2019;154:50-60. [PMID: 30586566 DOI: 10.1016/j.neuropharm.2018.12.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
473 Lin JS, Anaclet C, Sergeeva OA, Haas HL. The waking brain: an update. Cell Mol Life Sci 2011;68:2499-512. [PMID: 21318261 DOI: 10.1007/s00018-011-0631-8] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 7.0] [Reference Citation Analysis]
474 Mang GM, Dürst T, Bürki H, Imobersteg S, Abramowski D, Schuepbach E, Hoyer D, Fendt M, Gee CE. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors. Sleep 2012;35:1625-35. [PMID: 23204605 DOI: 10.5665/sleep.2232] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 6.1] [Reference Citation Analysis]
475 Gentile TA, Simmons SJ, Barker DJ, Shaw JK, España RA, Muschamp JW. Suvorexant, an orexin/hypocretin receptor antagonist, attenuates motivational and hedonic properties of cocaine. Addict Biol 2018;23:247-55. [PMID: 28419646 DOI: 10.1111/adb.12507] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 7.2] [Reference Citation Analysis]
476 Dauvilliers Y, Siegel JM, Lopez R, Torontali ZA, Peever JH. Cataplexy—clinical aspects, pathophysiology and management strategy. Nat Rev Neurol 2014;10:386-95. [DOI: 10.1038/nrneurol.2014.97] [Cited by in Crossref: 103] [Cited by in F6Publishing: 77] [Article Influence: 12.9] [Reference Citation Analysis]
477 Sharma R, Sahota P, Thakkar MM. Melatonin promotes sleep in mice by inhibiting orexin neurons in the perifornical lateral hypothalamus. J Pineal Res 2018;65:e12498. [DOI: 10.1111/jpi.12498] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
478 Mashour GA, Pal D. Interfaces of Sleep and Anesthesia. Anesthesiology Clinics 2012;30:385-98. [DOI: 10.1016/j.anclin.2012.05.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
479 Garau C, Blomeley C, Burdakov D. Orexin neurons and inhibitory Agrp→orexin circuits guide spatial exploration in mice. J Physiol 2020;598:4371-83. [PMID: 32667686 DOI: 10.1113/JP280158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
480 Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2017;152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
481 Samson WK, Bagley SL, Ferguson AV, White MM. Orexin receptor subtype activation and locomotor behaviour in the rat. Acta Physiol (Oxf) 2010;198:313-24. [PMID: 19889100 DOI: 10.1111/j.1748-1716.2009.02056.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
482 Allard JS, Tizabi Y, Shaffery JP, Manaye K. Effects of rapid eye movement sleep deprivation on hypocretin neurons in the hypothalamus of a rat model of depression. Neuropeptides 2007;41:329-37. [PMID: 17590434 DOI: 10.1016/j.npep.2007.04.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 1.9] [Reference Citation Analysis]
483 Viskaitis P, Arnold M, Garau C, Jensen LT, Fugger L, Peleg-Raibstein D, Burdakov D. Ingested non-essential amino acids recruit brain orexin cells to suppress eating in mice. Curr Biol 2022:S0960-9822(22)00337-2. [PMID: 35316652 DOI: 10.1016/j.cub.2022.02.067] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
484 Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F. Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 2010;13:513-20. [PMID: 20305645 DOI: 10.1038/nn.2518] [Cited by in Crossref: 141] [Cited by in F6Publishing: 127] [Article Influence: 11.8] [Reference Citation Analysis]
485 Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016;594:5391-414. [PMID: 27060683 DOI: 10.1113/JP271324] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
486 Yamuy J, Fung SJ, Xi M, Chase MH. State-dependent control of lumbar motoneurons by the hypocretinergic system. Exp Neurol 2010;221:335-45. [PMID: 19962375 DOI: 10.1016/j.expneurol.2009.11.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
487 Torterolo P, Sampogna S, Chase MH. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons. Brain Res 2013;1491:68-77. [PMID: 23122879 DOI: 10.1016/j.brainres.2012.10.050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
488 Holst SC, Landolt HP. Sleep-Wake Neurochemistry. Sleep Med Clin 2018;13:137-46. [PMID: 29759265 DOI: 10.1016/j.jsmc.2018.03.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
489 Rivas M, Torterolo P, Ferreira A, Benedetto L. Hypocretinergic system in the medial preoptic area promotes maternal behavior in lactating rats. Peptides 2016;81:9-14. [PMID: 27083313 DOI: 10.1016/j.peptides.2016.04.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
490 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
491 Staples LG, Cornish JL. The orexin-1 receptor antagonist SB-334867 attenuates anxiety in rats exposed to cat odor but not the elevated plus maze: An investigation of Trial 1 and Trial 2 effects. Hormones and Behavior 2014;65:294-300. [DOI: 10.1016/j.yhbeh.2013.12.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
492 Bhagwandin A, Gravett N, Hemingway J, Oosthuizen M, Bennett N, Siegel J, Manger P. Orexinergic neuron numbers in three species of African mole rats with rhythmic and arrhythmic chronotypes. Neuroscience 2011;199:153-65. [DOI: 10.1016/j.neuroscience.2011.10.023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
493 Kuwaki T, Zhang W, Nakamura A, Deng B. Emotional and state-dependent modification of cardiorespiratory function: Role of orexinergic neurons. Autonomic Neuroscience 2008;142:11-6. [DOI: 10.1016/j.autneu.2008.03.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
494 Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 2011;31:10529-39. [PMID: 21775598 DOI: 10.1523/JNEUROSCI.0784-11.2011] [Cited by in Crossref: 152] [Cited by in F6Publishing: 92] [Article Influence: 13.8] [Reference Citation Analysis]
495 Biswabharati S, Jean-Xavier C, Eaton SEA, Lognon AP, Brett R, Hardjasa L, Whelan PJ. Orexinergic Modulation of Spinal Motor Activity in the Neonatal Mouse Spinal Cord. eNeuro 2018;5:ENEURO. [PMID: 30417080 DOI: 10.1523/ENEURO.0226-18.2018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
496 Trofimova I, Robbins TW. Temperament and arousal systems: A new synthesis of differential psychology and functional neurochemistry. Neurosci Biobehav Rev 2016;64:382-402. [PMID: 26969100 DOI: 10.1016/j.neubiorev.2016.03.008] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
497 Diniz Behn CG, Kopell N, Brown EN, Mochizuki T, Scammell TE. Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. J Neurophysiol 2008;99:3090-103. [PMID: 18417630 DOI: 10.1152/jn.01243.2007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 3.6] [Reference Citation Analysis]
498 Khanday M, Mallick B. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats. Neuroscience 2015;308:125-33. [DOI: 10.1016/j.neuroscience.2015.09.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
499 Pang YJ, Feng H, Wen SY, Qiao QC, Zhang J, Yang N. Orexin enhances firing activities in the gigantocellular reticular nucleus through the activation of non-selective cationic conductance. Neurosci Lett 2020;733:135088. [PMID: 32464262 DOI: 10.1016/j.neulet.2020.135088] [Reference Citation Analysis]
500 Martelli D, Stanić D, Dutschmann M. The emerging role of the parabrachial complex in the generation of wakefulness drive and its implication for respiratory control. Respir Physiol Neurobiol 2013;188:318-23. [PMID: 23816598 DOI: 10.1016/j.resp.2013.06.019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
501 Baimel C, Borgland SL, Corrigall W. Cocaine and Nicotine Research Illustrates a Range of Hypocretin Mechanisms in Addiction. Sleep Hormones. Elsevier; 2012. pp. 291-313. [DOI: 10.1016/b978-0-12-394623-2.00016-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
502 Hsieh KC, Gvilia I, Kumar S, Uschakov A, McGinty D, Alam MN, Szymusiak R. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states. Neuroscience 2011;188:55-67. [PMID: 21601616 DOI: 10.1016/j.neuroscience.2011.05.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
503 Tan Y, Hang F, Liu ZW, Stoiljkovic M, Wu M, Tu Y, Han W, Lee AM, Kelley C, Hajós M, Lu L, de Lecea L, De Araujo I, Picciotto MR, Horvath TL, Gao XB. Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. J Clin Invest 2020;130:4985-98. [PMID: 32516139 DOI: 10.1172/JCI130889] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
504 Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 2011;51:243-66. [PMID: 21034217 DOI: 10.1146/annurev-pharmtox-010510-100528] [Cited by in Crossref: 202] [Cited by in F6Publishing: 194] [Article Influence: 18.4] [Reference Citation Analysis]
505 Tsujino N, Tsunematsu T, Uchigashima M, Konno K, Yamanaka A, Kobayashi K, Watanabe M, Koyama Y, Sakurai T. Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice. PLoS One 2013;8:e70012. [PMID: 23922890 DOI: 10.1371/journal.pone.0070012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
506 Gozzi A, Turrini G, Piccoli L, Massagrande M, Amantini D, Antolini M, Martinelli P, Cesari N, Montanari D, Tessari M, Corsi M, Bifone A. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists. PLoS One 2011;6:e16406. [PMID: 21307957 DOI: 10.1371/journal.pone.0016406] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 6.9] [Reference Citation Analysis]
507 Bastianini S, Silvani A. Clinical implications of basic research: The role of hypocretin/orexin neurons in the central autonomic network. Clinical and Translational Neuroscience 2018;2:2514183X1878932. [DOI: 10.1177/2514183x18789327] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
508 Winrow CJ, Gotter AL, Cox CD, Doran SM, Tannenbaum PL, Breslin MJ, Garson SL, Fox SV, Harrell CM, Stevens J, Reiss DR, Cui D, Coleman PJ, Renger JJ. Promotion of sleep by suvorexant-a novel dual orexin receptor antagonist. J Neurogenet 2011;25:52-61. [PMID: 21473737 DOI: 10.3109/01677063.2011.566953] [Cited by in Crossref: 179] [Cited by in F6Publishing: 166] [Article Influence: 16.3] [Reference Citation Analysis]
509 Samson WK, Bagley SL, Ferguson AV, White MM. Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2007;292:R382-7. [DOI: 10.1152/ajpregu.00496.2006] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 3.3] [Reference Citation Analysis]
510 Kuwaki T. Orexinergic modulation of breathing across vigilance states. Respir Physiol Neurobiol 2008;164:204-12. [PMID: 18455970 DOI: 10.1016/j.resp.2008.03.011] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 4.5] [Reference Citation Analysis]
511 Chen J, Xia C, Wang J, Jiang M, Zhang H, Zhang C, Zhu M, Shen L, Zhu D. The effect of orexin-A on cardiac dysfunction mediated by NADPH oxidase-derived superoxide anion in ventrolateral medulla. PLoS One 2013;8:e69840. [PMID: 23922819 DOI: 10.1371/journal.pone.0069840] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
512 Pace M, Falappa M, Freschi A, Balzani E, Berteotti C, Lo Martire V, Kaveh F, Hovig E, Zoccoli G, Amici R, Cerri M, Urbanucci A, Tucci V. Loss of Snord116 impacts lateral hypothalamus, sleep, and food-related behaviors. JCI Insight 2020;5:137495. [PMID: 32365348 DOI: 10.1172/jci.insight.137495] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
513 Zhang XY, Yu L, Zhuang QX, Zhu JN, Wang JJ. Central functions of the orexinergic system. Neurosci Bull 2013;29:355-65. [PMID: 23299718 DOI: 10.1007/s12264-012-1297-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
514 Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T. Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. J Appl Physiol (1985) 2007;102:241-8. [PMID: 16959906 DOI: 10.1152/japplphysiol.00679.2006] [Cited by in Crossref: 107] [Cited by in F6Publishing: 98] [Article Influence: 6.7] [Reference Citation Analysis]
515 Burdakov D. How orexin signals bias action: Hypothalamic and accumbal circuits. Brain Res 2020;1731:145943. [PMID: 30205111 DOI: 10.1016/j.brainres.2018.09.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
516 Bender F, Gorbati M, Cadavieco MC, Denisova N, Gao X, Holman C, Korotkova T, Ponomarenko A. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. Nat Commun 2015;6:8521. [PMID: 26455912 DOI: 10.1038/ncomms9521] [Cited by in Crossref: 92] [Cited by in F6Publishing: 81] [Article Influence: 13.1] [Reference Citation Analysis]
517 España RA. Hypocretin/orexin involvement in reward and reinforcement. Vitam Horm 2012;89:185-208. [PMID: 22640614 DOI: 10.1016/B978-0-12-394623-2.00010-X] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
518 Ng MC. Orexin and Epilepsy: Potential Role of REM Sleep. Sleep 2017;40. [DOI: 10.1093/sleep/zsw061] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
519 Carus-Cadavieco M, Gorbati M, Ye L, Bender F, van der Veldt S, Kosse C, Börgers C, Lee SY, Ramakrishnan C, Hu Y, Denisova N, Ramm F, Volitaki E, Burdakov D, Deisseroth K, Ponomarenko A, Korotkova T. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature 2017;542:232-6. [PMID: 28146472 DOI: 10.1038/nature21066] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 12.0] [Reference Citation Analysis]
520 Takakusaki K. Forebrain control of locomotor behaviors. Brain Research Reviews 2008;57:192-8. [DOI: 10.1016/j.brainresrev.2007.06.024] [Cited by in Crossref: 96] [Cited by in F6Publishing: 79] [Article Influence: 6.9] [Reference Citation Analysis]
521 Agostinelli LJ, Ferrari LL, Mahoney CE, Mochizuki T, Lowell BB, Arrigoni E, Scammell TE. Descending projections from the basal forebrain to the orexin neurons in mice. J Comp Neurol 2017;525:1668-84. [PMID: 27997037 DOI: 10.1002/cne.24158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
522 Carter ME, de Lecea L, Adamantidis A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front Behav Neurosci 2013;7:43. [PMID: 23730276 DOI: 10.3389/fnbeh.2013.00043] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
523 Volgin DV, Stettner GM, Kubin L. Circadian dependence of receptors that mediate wake-related excitatory drive to hypoglossal motoneurons. Respir Physiol Neurobiol 2013;188:301-7. [PMID: 23665050 DOI: 10.1016/j.resp.2013.04.024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
524 Gvilia I. Underlying Brain Mechanisms that Regulate Sleep–Wakefulness Cycles. Science of Awakening. Elsevier; 2010. pp. 1-21. [DOI: 10.1016/s0074-7742(10)93001-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]
525 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
526 Horne J. REM sleep vs exploratory wakefulness: Alternatives within adult ‘sleep debt’? Sleep Medicine Reviews 2020;50:101252. [DOI: 10.1016/j.smrv.2019.101252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
527 Chen L, Mckenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, Brown RE, Mccarley RW. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period: Orexin type 1 receptor knockdown increases REM. European Journal of Neuroscience 2010;32:1528-36. [DOI: 10.1111/j.1460-9568.2010.07401.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
528 Takahashi Y, Zhang W, Sameshima K, Kuroki C, Matsumoto A, Sunanaga J, Kono Y, Sakurai T, Kanmura Y, Kuwaki T. Orexin neurons are indispensable for prostaglandin E2-induced fever and defence against environmental cooling in mice. J Physiol 2013;591:5623-43. [PMID: 23959674 DOI: 10.1113/jphysiol.2013.261271] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
529 Henny P, Jones BE. Vesicular glutamate (VGlut), GABA (VGAT), and acetylcholine (VACht) transporters in basal forebrain axon terminals innervating the lateral hypothalamus. J Comp Neurol 2006;496:453-67. [PMID: 16572456 DOI: 10.1002/cne.20928] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
530 Schoonakker M, Meijer JH, Deboer T, Fifel K. Heterogeneity in the circadian and homeostatic modulation of multiunit activity in the lateral hypothalamus. Sleep 2018;41. [PMID: 29522210 DOI: 10.1093/sleep/zsy051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
531 Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 2008;153:860-70. [PMID: 18424001 DOI: 10.1016/j.neuroscience.2008.02.058] [Cited by in Crossref: 161] [Cited by in F6Publishing: 150] [Article Influence: 11.5] [Reference Citation Analysis]
532 Kosse C, Burdakov D. A unifying computational framework for stability and flexibility of arousal. Front Syst Neurosci 2014;8:192. [PMID: 25368557 DOI: 10.3389/fnsys.2014.00192] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
533 Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013;2013:983964. [PMID: 23935621 DOI: 10.1155/2013/983964] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
534 Sakurai T, Mieda M, Tsujino N. The orexin system: roles in sleep/wake regulation: Orexin and sleep/wake state. Annals of the New York Academy of Sciences 2010;1200:149-61. [DOI: 10.1111/j.1749-6632.2010.05513.x] [Cited by in Crossref: 125] [Cited by in F6Publishing: 111] [Article Influence: 10.4] [Reference Citation Analysis]
535 Mieda M. The roles of orexins in sleep/wake regulation. Neuroscience Research 2017;118:56-65. [DOI: 10.1016/j.neures.2017.03.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
536 Moreno-balandrn E, Garzn M, Bdalo C, Reinoso-surez F, de Andrs I. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. European Journal of Neuroscience 2008;28:331-41. [DOI: 10.1111/j.1460-9568.2008.06334.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
537 Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2015;49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
538 Szymusiak R, Gvilia I, McGinty D. Hypothalamic control of sleep. Sleep Med 2007;8:291-301. [PMID: 17468047 DOI: 10.1016/j.sleep.2007.03.013] [Cited by in Crossref: 124] [Cited by in F6Publishing: 97] [Article Influence: 8.3] [Reference Citation Analysis]
539 Furlong T, Carrive P. Neurotoxic lesions centered on the perifornical hypothalamus abolish the cardiovascular and behavioral responses of conditioned fear to context but not of restraint. Brain Res 2007;1128:107-19. [PMID: 17126820 DOI: 10.1016/j.brainres.2006.10.058] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 2.6] [Reference Citation Analysis]
540 Siegel JM. REM sleep: a biological and psychological paradox. Sleep Med Rev 2011;15:139-42. [PMID: 21482156 DOI: 10.1016/j.smrv.2011.01.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
541 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
542 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
543 Miyazaki S, Liu C, Hayashi Y. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep. Neuroscience Research 2017;118:3-12. [DOI: 10.1016/j.neures.2017.04.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
544 Nir Y, Massimini M, Boly M, Tononi G. Sleep and Consciousness. In: Cavanna AE, Nani A, Blumenfeld H, Laureys S, editors. Neuroimaging of Consciousness. Berlin: Springer Berlin Heidelberg; 2013. pp. 133-82. [DOI: 10.1007/978-3-642-37580-4_9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
545 Panhelainen AE, Korpi ER. Evidence for a role of inhibition of orexinergic neurons in the anxiolytic and sedative effects of diazepam: A c-Fos study. Pharmacol Biochem Behav 2012;101:115-24. [PMID: 22210490 DOI: 10.1016/j.pbb.2011.12.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
546 Weymann KB, Wood LJ, Zhu X, Marks DL. A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain Behav Immun 2014;37:84-94. [PMID: 24216337 DOI: 10.1016/j.bbi.2013.11.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
547 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
548 Nuñez A, Rodrigo-Angulo ML, Andrés ID, Garzón M. Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis. Curr Neuropharmacol 2009;7:50-9. [PMID: 19721817 DOI: 10.2174/157015909787602797] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
549 Balcita-Pedicino JJ, Sesack SR. Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol 2007;503:668-84. [PMID: 17559101 DOI: 10.1002/cne.21420] [Cited by in Crossref: 102] [Cited by in F6Publishing: 110] [Article Influence: 6.8] [Reference Citation Analysis]
550 Rao Y, Mineur YS, Gan G, Wang AH, Liu ZW, Wu X, Suyama S, de Lecea L, Horvath TL, Picciotto MR, Gao XB. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice. J Physiol 2013;591:1951-66. [PMID: 23318871 DOI: 10.1113/jphysiol.2012.246983] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
551 Freeman AAH. Neurochemistry of the Sleep-Wake Cycle in Parkinson’s Disease. In: Videnovic A, Högl B, editors. Disorders of Sleep and Circadian Rhythms in Parkinson's Disease. Vienna: Springer; 2015. pp. 19-33. [DOI: 10.1007/978-3-7091-1631-9_2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
552 Toth A, Balatoni B, Hajnik T, Detari L. EEG effect of orexin A in freely moving rats. Acta Physiologica Hungarica 2012;99:332-43. [DOI: 10.1556/aphysiol.99.2012.3.10] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
553 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
554 Tang Y, Benusiglio D, Grinevich V, Lin L. Distinct Types of Feeding Related Neurons in Mouse Hypothalamus. Front Behav Neurosci 2016;10:91. [PMID: 27242460 DOI: 10.3389/fnbeh.2016.00091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
555 Jones BE, Hassani OK. The role of Hcrt/Orx and MCH neurons in sleep-wake state regulation. Sleep 2013;36:1769-72. [PMID: 24293746 DOI: 10.5665/sleep.3188] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
556 van Hasselt SJ, Hut RA, Allocca G, Vyssotski AL, Piersma T, Rattenborg NC, Meerlo P. Cloud cover amplifies the sleep-suppressing effect of artificial light at night in geese. Environ Pollut 2021;273:116444. [PMID: 33453700 DOI: 10.1016/j.envpol.2021.116444] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
557 Nishino S. The hypocretin/orexin receptor: therapeutic prospective in sleep disorders. Expert Opinion on Investigational Drugs 2007;16:1785-97. [DOI: 10.1517/13543784.16.11.1785] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
558 Siegel JM. REM Sleep*. Principles and Practice of Sleep Medicine. Elsevier; 2011. pp. 92-111. [DOI: 10.1016/b978-1-4160-6645-3.00008-6] [Cited by in Crossref: 14] [Article Influence: 1.3] [Reference Citation Analysis]
559 Deurveilher S, Cumyn EM, Peers T, Rusak B, Semba K. Estradiol replacement enhances sleep deprivation-induced c-Fos immunoreactivity in forebrain arousal regions of ovariectomized rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2008;295:R1328-40. [DOI: 10.1152/ajpregu.90576.2008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
560 Piantadosi PT, Holmes A, Roberts BM, Bailey AM. Orexin receptor activity in the basal forebrain alters performance on an olfactory discrimination task. Brain Res 2015;1594:215-22. [PMID: 25451124 DOI: 10.1016/j.brainres.2014.10.041] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]