BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Downs JL, Dunn MR, Borok E, Shanabrough M, Horvath TL, Kohama SG, Urbanski HF. Orexin neuronal changes in the locus coeruleus of the aging rhesus macaque. Neurobiol Aging 2007;28:1286-95. [PMID: 16870307 DOI: 10.1016/j.neurobiolaging.2006.05.025] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Hunt NJ, Rodriguez ML, Waters KA, Machaalani R. Changes in orexin (hypocretin) neuronal expression with normal aging in the human hypothalamus. Neurobiology of Aging 2015;36:292-300. [DOI: 10.1016/j.neurobiolaging.2014.08.010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 7.0] [Reference Citation Analysis]
2 Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacology & Therapeutics 2018;186:25-44. [DOI: 10.1016/j.pharmthera.2017.12.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
3 Ramos BP, Colgan LA, Nou E, Arnsten AF. Beta2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals. Neurobiol Aging 2008;29:1060-9. [PMID: 17363115 DOI: 10.1016/j.neurobiolaging.2007.02.003] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 2.9] [Reference Citation Analysis]
4 Sitzmann BD, Brown DI, Garyfallou VT, Kohama SG, Mattison JA, Ingram DK, Roth GS, Ottinger MA, Urbanski HF. Impact of moderate calorie restriction on testicular morphology and endocrine function in adult rhesus macaques (Macaca mulatta). Age (Dordr) 2014;36:183-97. [PMID: 23881606 DOI: 10.1007/s11357-013-9563-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
5 Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 2016;139 Suppl 2:154-78. [PMID: 26968403 DOI: 10.1111/jnc.13447] [Cited by in Crossref: 77] [Cited by in F6Publishing: 73] [Article Influence: 12.8] [Reference Citation Analysis]
6 Zhong H, Yu B, Luo D, Yang L, Zhang J, Jiang S, Hu S, Luo Y, Yang M, Hong F, Yang S. Roles of aging in sleep. Neuroscience & Biobehavioral Reviews 2019;98:177-84. [DOI: 10.1016/j.neubiorev.2019.01.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
7 Brownell SE, Conti B. Age- and gender-specific changes of hypocretin immunopositive neurons in C57Bl/6 mice. Neurosci Lett 2010;472:29-32. [PMID: 20117171 DOI: 10.1016/j.neulet.2010.01.048] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Brownell SE, Conti B. Age- and gender-specific changes of hypocretin immunopositive neurons in C57Bl/6 mice. Neurosci Lett 2010;472:29-32. [PMID: 20117171 DOI: 10.1016/j.neulet.2010.01.048] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 3.4] [Reference Citation Analysis]
9 Mendelsohn AR, Larrick JW. Reversing Age-Related Decline in Working Memory. Rejuvenation Research 2011;14:557-9. [DOI: 10.1089/rej.2011.1247] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
10 Luna SL, Brown DI, Eghlidi DH, Kohama SG, Urbanski HF. Locomotor activity and the expression of orexin A and orexin B in aged female rhesus macaques. Neurobiol Aging 2017;50:1-4. [PMID: 27837674 DOI: 10.1016/j.neurobiolaging.2016.10.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
11 Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015;20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
12 Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Thannickal TC, Siegel JM, Sherwood CC, Manger PR. Nuclear organization of orexinergic neurons in the hypothalamus of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021. [PMID: 34535040 DOI: 10.1002/ar.24775] [Reference Citation Analysis]
13 Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020;1731:145921. [PMID: 30148983 DOI: 10.1016/j.brainres.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
14 Rolls A, Borg JS, de Lecea L. Sleep and metabolism: Role of hypothalamic neuronal circuitry. Best Practice & Research Clinical Endocrinology & Metabolism 2010;24:817-28. [DOI: 10.1016/j.beem.2010.08.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
15 Toledano A, Álvarez M, López-rodríguez A, Toledano-díaz A, Fernández-verdecia C. ¿Existe la enfermedad de Alzheimer en todos los primates? Afección de Alzheimer en primates no humanos y sus implicaciones fisiopatológicas (I). Neurología 2012;27:354-69. [DOI: 10.1016/j.nrl.2011.05.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
16 Toledano A, Álvarez M, López-rodríguez A, Toledano-díaz A, Fernández-verdecia C. Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-human primates and its pathophysiological implications (I). Neurología (English Edition) 2012;27:354-69. [DOI: 10.1016/j.nrleng.2012.07.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
17 Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. Prog Brain Res 2012;198:133-61. [PMID: 22813973 DOI: 10.1016/B978-0-444-59489-1.00009-4] [Cited by in Crossref: 125] [Cited by in F6Publishing: 69] [Article Influence: 12.5] [Reference Citation Analysis]
18 Hauw JJ, Hausser-Hauw C, Hasboun D, Seilhean D. [The neuropathology of sleep in human neurodegenerative diseases]. Rev Neurol (Paris) 2008;164:669-82. [PMID: 18760429 DOI: 10.1016/j.neurol.2008.07.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
19 Kessler BA, Stanley EM, Frederick-Duus D, Fadel J. Age-related loss of orexin/hypocretin neurons. Neuroscience 2011;178:82-8. [PMID: 21262323 DOI: 10.1016/j.neuroscience.2011.01.031] [Cited by in Crossref: 73] [Cited by in F6Publishing: 69] [Article Influence: 6.6] [Reference Citation Analysis]
20 Noriega NC, Garyfallou VT, Kohama SG, Urbanski HF. Glutamate receptor subunit expression in the rhesus macaque locus coeruleus. Brain Res 2007;1173:53-65. [PMID: 17765206 DOI: 10.1016/j.brainres.2007.08.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.7] [Reference Citation Analysis]
21 Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron 2017;94:19-36. [PMID: 28384471 DOI: 10.1016/j.neuron.2017.02.004] [Cited by in Crossref: 334] [Cited by in F6Publishing: 269] [Article Influence: 66.8] [Reference Citation Analysis]
22 Anastasian ZH, Ornstein E, Heyer EJ. Delayed arousal. Anesthesiol Clin 2009;27:429-50, table of contents. [PMID: 19825485 DOI: 10.1016/j.anclin.2009.07.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
23 Stern AL, Naidoo N. Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease. Springerplus 2015;4:25. [PMID: 25635245 DOI: 10.1186/s40064-014-0777-6] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
24 Hasan S, Dauvilliers Y, Mongrain V, Franken P, Tafti M. Age-related changes in sleep in inbred mice are genotype dependent. Neurobiol Aging 2012;33:195.e13-26. [PMID: 20619936 DOI: 10.1016/j.neurobiolaging.2010.05.010] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 4.0] [Reference Citation Analysis]
25 Arnsten AF, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 2012;76:223-39. [PMID: 23040817 DOI: 10.1016/j.neuron.2012.08.038] [Cited by in Crossref: 310] [Cited by in F6Publishing: 304] [Article Influence: 31.0] [Reference Citation Analysis]
26 Calva CB, Fayyaz H, Fadel JR. Effects of Intranasal Orexin-A (Hypocretin-1) Administration on Neuronal Activation, Neurochemistry, and Attention in Aged Rats. Front Aging Neurosci 2019;11:362. [PMID: 32038222 DOI: 10.3389/fnagi.2019.00362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020;10:E471. [PMID: 33227979 DOI: 10.3390/metabo10110471] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Wang W, Pan Y, Li Q, Wang L. Orexin: A potential role in the process of obstructive sleep apnea. Peptides 2013;42:48-54. [DOI: 10.1016/j.peptides.2013.01.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
29 Counts SE, Mufson EJ. Locus Coeruleus. The Human Nervous System. Elsevier; 2012. pp. 425-38. [DOI: 10.1016/b978-0-12-374236-0.10012-4] [Cited by in Crossref: 18] [Article Influence: 1.8] [Reference Citation Analysis]
30 Singletary KG, Naidoo N. Disease and Degeneration of Aging Neural Systems that Integrate Sleep Drive and Circadian Oscillations. Front Neurol 2011;2:66. [PMID: 22028699 DOI: 10.3389/fneur.2011.00066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
31 Bensaid M, Tandé D, Fabre V, Michel PP, Hirsch EC, François C. Sparing of orexin-A and orexin-B neurons in the hypothalamus and of orexin fibers in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated macaques. Eur J Neurosci 2015;41:129-36. [PMID: 25328140 DOI: 10.1111/ejn.12761] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
32 He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Progress in Neurobiology 2014;112:1-23. [DOI: 10.1016/j.pneurobio.2013.10.001] [Cited by in Crossref: 190] [Cited by in F6Publishing: 182] [Article Influence: 23.8] [Reference Citation Analysis]
33 Seigneur E, de Lecea L. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery 2020;8:100070. [DOI: 10.1016/j.medidd.2020.100070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Liu MF, Xue Y, Liu C, Liu YH, Diao HL, Wang Y, Pan YP, Chen L. Orexin-A Exerts Neuroprotective Effects via OX1R in Parkinson's Disease. Front Neurosci 2018;12:835. [PMID: 30524223 DOI: 10.3389/fnins.2018.00835] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Urbanski HF. Effect of androgen supplementation on 24-hour activity-rest patterns of aged male rhesus macaques. Neurobiol Aging 2017;54:100-2. [PMID: 28359034 DOI: 10.1016/j.neurobiolaging.2017.02.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
36 Zink AN, Perez-Leighton CE, Kotz CM. The orexin neuropeptide system: physical activity and hypothalamic function throughout the aging process. Front Syst Neurosci 2014;8:211. [PMID: 25408639 DOI: 10.3389/fnsys.2014.00211] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
37 Liu MF, Xue Y, Liu C, Liu YH, Diao HL, Wang Y, Pan YP, Chen L. Orexin-A Exerts Neuroprotective Effects via OX1R in Parkinson's Disease. Front Neurosci 2018;12:835. [PMID: 30524223 DOI: 10.3389/fnins.2018.00835] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
38 Xu T, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cellular Signalling 2013;25:2413-23. [DOI: 10.1016/j.cellsig.2013.07.025] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 7.6] [Reference Citation Analysis]
39 Calva CB, Fayyaz H, Fadel JR. Increased acetylcholine and glutamate efflux in the prefrontal cortex following intranasal orexin-A (hypocretin-1). J Neurochem 2018;145:232-44. [PMID: 29250792 DOI: 10.1111/jnc.14279] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
40 Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Reference Citation Analysis]
41 Benarroch EE. Locus coeruleus. Cell Tissue Res 2018;373:221-32. [DOI: 10.1007/s00441-017-2649-1] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 9.6] [Reference Citation Analysis]
42 Boschen KE, Fadel JR, Burk JA. Systemic and intrabasalis administration of the orexin-1 receptor antagonist, SB-334867, disrupts attentional performance in rats. Psychopharmacology (Berl) 2009;206:205-13. [PMID: 19575184 DOI: 10.1007/s00213-009-1596-2] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 3.0] [Reference Citation Analysis]
43 Mattis J, Sehgal A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol Metab 2016;27:192-203. [PMID: 26947521 DOI: 10.1016/j.tem.2016.02.003] [Cited by in Crossref: 140] [Cited by in F6Publishing: 116] [Article Influence: 23.3] [Reference Citation Analysis]
44 Manini TM. Energy expenditure and aging. Ageing Res Rev 2010;9:1-11. [PMID: 19698803 DOI: 10.1016/j.arr.2009.08.002] [Cited by in Crossref: 128] [Cited by in F6Publishing: 105] [Article Influence: 9.8] [Reference Citation Analysis]
45 Urbanski HF. Role of circadian neuroendocrine rhythms in the control of behavior and physiology. Neuroendocrinology 2011;93:211-22. [PMID: 21508622 DOI: 10.1159/000327399] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
46 Haley GE, Landauer N, Renner L, Weiss A, Hooper K, Urbanski HF, Kohama SG, Neuringer M, Raber J. Circadian activity associated with spatial learning and memory in aging rhesus monkeys. Exp Neurol 2009;217:55-62. [PMID: 19416674 DOI: 10.1016/j.expneurol.2009.01.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
47 Naidoo N, Zhu J, Galante RJ, Lian J, Strus E, Lee A, Keenan BT, Pack AI. Reduction of the molecular chaperone binding immunoglobulin protein (BiP) accentuates the effect of aging on sleep-wake behavior. Neurobiol Aging 2018;69:10-25. [PMID: 29843048 DOI: 10.1016/j.neurobiolaging.2018.04.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
48 Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opinion on Drug Discovery 2016;12:187-200. [DOI: 10.1080/17460441.2017.1271320] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
49 Eghlidi DH, Luna SL, Brown DI, Garyfallou VT, Kohama SG, Urbanski HF. Gene expression profiling of the SCN in young and old rhesus macaques. J Mol Endocrinol 2018;61:57-67. [PMID: 29743294 DOI: 10.1530/JME-18-0062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
50 Sawai N, Ueta Y, Nakazato M, Ozawa H. Developmental and aging change of orexin-A and -B immunoreactive neurons in the male rat hypothalamus. Neurosci Lett 2010;468:51-5. [PMID: 19857552 DOI: 10.1016/j.neulet.2009.10.061] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 4.5] [Reference Citation Analysis]
51 Naidoo N, Zhu J, Zhu Y, Fenik P, Lian J, Galante R, Veasey S. Endoplasmic reticulum stress in wake-active neurons progresses with aging. Aging Cell 2011;10:640-9. [PMID: 21388495 DOI: 10.1111/j.1474-9726.2011.00699.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 3.4] [Reference Citation Analysis]
52 Rolls ET, Deco G. Stochastic cortical neurodynamics underlying the memory and cognitive changes in aging. Neurobiol Learn Mem 2015;118:150-61. [PMID: 25536108 DOI: 10.1016/j.nlm.2014.12.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
53 Caetano MS, Horst NK, Harenberg L, Liu B, Arnsten AF, Laubach M. Lost in transition: aging-related changes in executive control by the medial prefrontal cortex. J Neurosci 2012;32:3765-77. [PMID: 22423097 DOI: 10.1523/JNEUROSCI.6011-11.2012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
54 Wang M, Gamo NJ, Yang Y, Jin LE, Wang XJ, Laubach M, Mazer JA, Lee D, Arnsten AF. Neuronal basis of age-related working memory decline. Nature. 2011;476:210-213. [PMID: 21796118 DOI: 10.1038/nature10243] [Cited by in Crossref: 255] [Cited by in F6Publishing: 246] [Article Influence: 23.2] [Reference Citation Analysis]
55 Kmieć Z, Pétervári E, Balaskó M, Székely M. Anorexia of Aging. Anorexia. Elsevier; 2013. pp. 319-55. [DOI: 10.1016/b978-0-12-410473-0.00013-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
56 Soler JE, Xiong H, Samad F, Manfredsson FP, Robison AJ, Núñez AA, Yan L. Orexin (hypocretin) mediates light-dependent fluctuation of hippocampal function in a diurnal rodent. Hippocampus 2021. [PMID: 34263969 DOI: 10.1002/hipo.23376] [Reference Citation Analysis]
57 Hunt NJ, Waters KA, Rodriguez ML, Machaalani R. Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 2015;130:185-98. [PMID: 25953524 DOI: 10.1007/s00401-015-1437-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]