BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pałasz A, Rojczyk E, Bogus K, Worthington JJ, Wiaderkiewicz R. The novel neuropeptide phoenixin is highly co-expressed with nesfatin-1 in the rat hypothalamus, an immunohistochemical study. Neuroscience Letters 2015;592:17-21. [DOI: 10.1016/j.neulet.2015.02.060] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Schalla MA, Stengel A. The role of phoenixin in behavior and food intake. Peptides 2019;114:38-43. [DOI: 10.1016/j.peptides.2019.04.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
2 Hofmann T, Weibert E, Ahnis A, Elbelt U, Rose M, Klapp BF, Stengel A. Phoenixin is negatively associated with anxiety in obese men. Peptides 2017;88:32-6. [DOI: 10.1016/j.peptides.2016.12.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
3 Xu Y, Zhang H, Li Q, Lao K, Wang Y. The role of nesfatin-1 expression in letrozole-induced polycystic ovaries in the rat. Gynecological Endocrinology 2017;33:438-41. [DOI: 10.1080/09513590.2017.1290068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
4 Yuruyen M, Gultekin G, Batun GC, Yavuzer H, Akcan FE, Doventas A, Emul M. Does plasma phoenixin level associate with cognition? Comparison between subjective memory complaint, mild cognitive impairment, and mild Alzheimer's disease. Int Psychogeriatr 2017;:1-8. [PMID: 28552081 DOI: 10.1017/S1041610217000825] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
5 Friedrich T, Schalla M, Scharner S, Kühne S, Goebel-stengel M, Kobelt P, Rose M, Stengel A. Intracerebroventricular injection of phoenixin alters feeding behavior and activates nesfatin-1 immunoreactive neurons in rats. Brain Research 2019;1715:188-95. [DOI: 10.1016/j.brainres.2019.03.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
6 Pałasz A, Żarczyński P, Bogus K, Mordecka-Chamera K, Della Vecchia A, Skałbania J, Worthington JJ, Krzystanek M, Żarczyńska M. Modulatory effect of olanzapine on SMIM20/phoenixin, NPQ/spexin and NUCB2/nesfatin-1 gene expressions in the rat brainstem. Pharmacol Rep 2021;73:1188-94. [PMID: 33928538 DOI: 10.1007/s43440-021-00267-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Mcilwraith EK, Belsham DD. Phoenixin: uncovering its receptor, signaling and functions. Acta Pharmacol Sin 2018;39:774-8. [PMID: 29671415 DOI: 10.1038/aps.2018.13] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
8 Schalla MA, Stengel A. Phoenixin-A Pleiotropic Gut-Brain Peptide. Int J Mol Sci 2018;19:E1726. [PMID: 29891773 DOI: 10.3390/ijms19061726] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
9 Rajeswari JJ, Unniappan S. Phoenixin-20 Stimulates mRNAs Encoding Hypothalamo-Pituitary-Gonadal Hormones, is Pro-Vitellogenic, and Promotes Oocyte Maturation in Zebrafish. Sci Rep 2020;10:6264. [PMID: 32286445 DOI: 10.1038/s41598-020-63226-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
10 Wei P, Keller C, Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput Struct Biotechnol J 2020;18:843-51. [PMID: 32322366 DOI: 10.1016/j.csbj.2020.02.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
11 Wang M, Deng S, Chen H, Jiang D, Tian C, Yang W, Wu T, Zhu C, Zhang Y, Li G. Phoenixin participated in regulation of food intake and growth in spotted scat, Scatophagus argus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2018;226:36-44. [DOI: 10.1016/j.cbpb.2018.07.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
12 Ma S, Ge Y, Gai X, Xue M, Li N, Kang J, Wan J, Zhang J. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus. Neurosci Lett 2016;611:28-32. [PMID: 26610903 DOI: 10.1016/j.neulet.2015.11.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
13 Lyu RM, Cowan A, Zhang Y, Chen YH, Dun SL, Chang JK, Dun NJ, Luo JJ. Phoenixin: a novel brain-gut-skin peptide with multiple bioactivity. Acta Pharmacol Sin 2018;39:770-3. [PMID: 29542680 DOI: 10.1038/aps.2017.195] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
14 Ullah K, ur Rahman T, Wu D, Lin X, Liu Y, Guo X, Leung PC, Zhang R, Huang H, Sheng J. Phoenixin-14 concentrations are increased in association with luteinizing hormone and nesfatin-1 concentrations in women with polycystic ovary syndrome. Clinica Chimica Acta 2017;471:243-7. [DOI: 10.1016/j.cca.2017.06.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
15 Guvenc G, Altinbas B, Kasikci E, Ozyurt E, Bas A, Udum D, Niaz N, Yalcin M. Contingent role of phoenixin and nesfatin-1 on secretions of the male reproductive hormones. Andrologia 2019;51:e13410. [PMID: 31637758 DOI: 10.1111/and.13410] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
16 Rocca C, Scavello F, Granieri MC, Pasqua T, Amodio N, Imbrogno S, Gattuso A, Mazza R, Cerra MC, Angelone T. Phoenixin-14: detection and novel physiological implications in cardiac modulation and cardioprotection. Cell Mol Life Sci 2018;75:743-56. [DOI: 10.1007/s00018-017-2661-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
17 Wang M, Chen HP, Zhai Y, Jiang DN, Liu JY, Tian CX, Wu TL, Zhu CH, Deng SP, Li GL. Phoenixin: Expression at different ovarian development stages and effects on genes ralated to reproduction in spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol 2019;228:17-25. [PMID: 30423433 DOI: 10.1016/j.cbpb.2018.10.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
18 Zandeh-Rahimi Y, Panahi N, Hesaraki S, Shirazi-Beheshtiha SH. Protective Effects of Phoenixin-14 Peptide in the Indomethacin-Induced Duodenal Ulcer: An Experimental Study. Int J Pept Res Ther 2022;28:43. [PMID: 35002587 DOI: 10.1007/s10989-021-10314-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Dore R, Levata L, Lehnert H, Schulz C. Nesfatin-1: functions and physiology of a novel regulatory peptide. Journal of Endocrinology 2017;232:R45-65. [DOI: 10.1530/joe-16-0361] [Cited by in Crossref: 64] [Cited by in F6Publishing: 20] [Article Influence: 12.8] [Reference Citation Analysis]
20 Mcilwraith EK, Zhang N, Belsham DD. The Regulation of Phoenixin: A Fascinating Multidimensional Peptide. Journal of the Endocrine Society 2022;6:bvab192. [DOI: 10.1210/jendso/bvab192] [Reference Citation Analysis]
21 Mukherjee K, Unniappan S. Mouse gastric mucosal endocrine cells are sources and sites of action of Phoenixin-20. Peptides 2021;141:170551. [PMID: 33862165 DOI: 10.1016/j.peptides.2021.170551] [Reference Citation Analysis]
22 Prinz P, Scharner S, Friedrich T, Schalla M, Goebel-stengel M, Rose M, Stengel A. Central and peripheral expression sites of phoenixin-14 immunoreactivity in rats. Biochemical and Biophysical Research Communications 2017;493:195-201. [DOI: 10.1016/j.bbrc.2017.09.048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
23 Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022;11:957. [DOI: 10.3390/cells11060957] [Reference Citation Analysis]
24 Friedrich T, Stengel A. Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. Int J Mol Sci 2021;22:9156. [PMID: 34502065 DOI: 10.3390/ijms22179156] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020;21:E8378. [PMID: 33171667 DOI: 10.3390/ijms21218378] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Rajeswari JJ, Blanco AM, Unniappan S. Phoenixin-20 suppresses food intake, modulates glucoregulatory enzymes, and enhances glycolysis in zebrafish. Am J Physiol Regul Integr Comp Physiol 2020;318:R917-28. [PMID: 32208925 DOI: 10.1152/ajpregu.00019.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Pałasz A, Janas-kozik M, Borrow A, Arias-carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochemistry International 2018;113:120-36. [DOI: 10.1016/j.neuint.2017.12.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
28 Gołyszny M, Obuchowicz E, Zieliński M. Neuropeptides as regulators of the hypothalamus-pituitary-gonadal (HPG) axis activity and their putative roles in stress-induced fertility disorders. Neuropeptides 2022;91:102216. [PMID: 34974357 DOI: 10.1016/j.npep.2021.102216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Friedrich T, Schalla MA, Lommel R, Goebel-Stengel M, Kobelt P, Rose M, Stengel A. Restraint stress increases the expression of phoenixin immunoreactivity in rat brain nuclei. Brain Res 2020;1743:146904. [PMID: 32474019 DOI: 10.1016/j.brainres.2020.146904] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
30 Schalla M, Prinz P, Friedrich T, Scharner S, Kobelt P, Goebel-stengel M, Rose M, Stengel A. Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides 2017;96:53-60. [DOI: 10.1016/j.peptides.2017.08.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
31 Friedrich T, Schalla MA, Goebel-stengel M, Kobelt P, Rose M, Stengel A. Inflammatory Stress Induced by Intraperitoneal Injection of LPS Increases Phoenixin Expression and Activity in Distinct Rat Brain Nuclei. Brain Sciences 2022;12:135. [DOI: 10.3390/brainsci12020135] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Schalla M, Goebel-stengel M, Friedrich T, Kühne S, Kobelt P, Rose M, Stengel A. Restraint stress affects circulating NUCB2/nesfatin-1 and phoenixin levels in male rats. Psychoneuroendocrinology 2020;122:104906. [DOI: 10.1016/j.psyneuen.2020.104906] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]