BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Margolis EB, Karkhanis AN. Dopaminergic cellular and circuit contributions to kappa opioid receptor mediated aversion. Neurochem Int 2019;129:104504. [PMID: 31301327 DOI: 10.1016/j.neuint.2019.104504] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Leconte C, Mongeau R, Noble F. Traumatic Stress-Induced Vulnerability to Addiction: Critical Role of the Dynorphin/Kappa Opioid Receptor System. Front Pharmacol 2022;13:856672. [PMID: 35571111 DOI: 10.3389/fphar.2022.856672] [Reference Citation Analysis]
2 Vitale EM, Smith AS. Neurobiology of Loneliness, Isolation, and Loss: Integrating Human and Animal Perspectives. Front Behav Neurosci 2022;16:846315. [DOI: 10.3389/fnbeh.2022.846315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chen T, Wang J, Wang YQ, Chu YX. Current Understanding of the Neural Circuitry in the Comorbidity of Chronic Pain and Anxiety. Neural Plast 2022;2022:4217593. [PMID: 35211169 DOI: 10.1155/2022/4217593] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Shokri-Kojori E, Naganawa M, Ramchandani VA, Wong DF, Wang GJ, Volkow ND. Brain opioid segments and striatal patterns of dopamine release induced by naloxone and morphine. Hum Brain Mapp 2021. [PMID: 34873784 DOI: 10.1002/hbm.25733] [Reference Citation Analysis]
5 Stelly CE, Fadok JP. Neurobiology: Novel peptide pathways impact threat discrimination. Curr Biol 2021;31:R1117-9. [PMID: 34637710 DOI: 10.1016/j.cub.2021.08.053] [Reference Citation Analysis]
6 Margolis EB, Wallace TL, Van Orden LJ, Martin WJ. Differential effects of novel kappa opioid receptor antagonists on dopamine neurons using acute brain slice electrophysiology. PLoS One 2020;15:e0232864. [PMID: 33373369 DOI: 10.1371/journal.pone.0232864] [Reference Citation Analysis]
7 Simmons SC, Shepard RD, Gouty S, Langlois LD, Flerlage WJ, Cox BM, Nugent FS. Early life stress dysregulates kappa opioid receptor signaling within the lateral habenula. Neurobiol Stress 2020;13:100267. [PMID: 33344720 DOI: 10.1016/j.ynstr.2020.100267] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
8 Vergara F, Sardi NF, Pescador AC, Guaita GO, Jark Stern CA, Chichorro JG, Fischer L. Contribution of mesolimbic dopamine and kappa opioid systems to the transition from acute to chronic pain. Neuropharmacology 2020;178:108226. [DOI: 10.1016/j.neuropharm.2020.108226] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
9 Dong X, Li S, Kirouac GJ. A projection from the paraventricular nucleus of the thalamus to the shell of the nucleus accumbens contributes to footshock stress-induced social avoidance. Neurobiol Stress 2020;13:100266. [PMID: 33344719 DOI: 10.1016/j.ynstr.2020.100266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
10 Pirino BE, Spodnick MB, Gargiulo AT, Curtis GR, Barson JR, Karkhanis AN. Kappa-opioid receptor-dependent changes in dopamine and anxiety-like or approach-avoidance behavior occur differentially across the nucleus accumbens shell rostro-caudal axis. Neuropharmacology 2020;181:108341. [PMID: 33011200 DOI: 10.1016/j.neuropharm.2020.108341] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Spasov AA, Zvartau EE, Grechko OI, Eliseeva NV, Semenova YV, Dravolina OA, Vasiliev PM, Anisimova VA. Study of aversive and p38 mapk-inhibitory properties of kappa-agonist with analgesic activity – compound RU-1205. RRP 2020;6:59-65. [DOI: 10.3897/rrpharmacology.6.54558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Walters SH, Shu Z, Michael AC, Levitan ES. Regional Variation in Striatal Dopamine Spillover and Release Plasticity. ACS Chem Neurosci 2020;11:888-99. [PMID: 32073248 DOI: 10.1021/acschemneuro.9b00577] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Escobar ADP, Casanova JP, Andrés ME, Fuentealba JA. Crosstalk Between Kappa Opioid and Dopamine Systems in Compulsive Behaviors. Front Pharmacol 2020;11:57. [PMID: 32132923 DOI: 10.3389/fphar.2020.00057] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Douma EH, de Kloet ER. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neuroscience & Biobehavioral Reviews 2020;108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 22.5] [Reference Citation Analysis]
15 Funk D, Coen K, Tamadon S, Lê AD. Effects of the Alpha-1 Antagonist Prazosin on KOR Agonist-Induced Reinstatement of Alcohol Seeking. Int J Neuropsychopharmacol 2019;22:724-34. [PMID: 31556948 DOI: 10.1093/ijnp/pyz049] [Reference Citation Analysis]