BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Steidl S, Wasserman DI, Blaha CD, Yeomans JS. Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neurosci Biobehav Rev 2017;83:72-82. [PMID: 28951251 DOI: 10.1016/j.neubiorev.2017.09.022] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 7.6] [Reference Citation Analysis]
Number Citing Articles
1 Amohashemi E, Reisi P, Alaei H. Involvement of AMPA receptors of lateral habenula in the expression and acquisition phases of morphine-induced place preference. Brain Research 2022. [DOI: 10.1016/j.brainres.2022.148150] [Reference Citation Analysis]
2 Zamani N, Osgoei LT, Aliaghaei A, Zamani N, Hassanian-moghaddam H. Chronic exposure to methadone induces activated microglia and astrocyte and cell death in the cerebellum of adult male rats. Metab Brain Dis 2022. [DOI: 10.1007/s11011-022-01108-z] [Reference Citation Analysis]
3 Amohashemi E, Reisi P, Alaei H. Involvement of GABAA receptors of lateral habenula in the acquisition and expression phases of morphine-induced place preference in male rats. Behav Pharmacol 2022;33:452-65. [PMID: 36148835 DOI: 10.1097/FBP.0000000000000695] [Reference Citation Analysis]
4 He T, Chen W, Fan Y, Xu X, Guo H, Li N, Lu X, Ge F, Guan X. A novel cholinergic projection from the lateral parabrachial nucleus and its role in methamphetamine-primed conditioned place preference. Brain Communications 2022;4. [DOI: 10.1093/braincomms/fcac219] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Li X, Zheng Y, Zhao X, Cui R, Li X. Relationship between the role of muscarinic M3 receptors in morphine-induced conditioned place preference and the mesolimbic dopamine system. Neurosci Lett 2022;786:136774. [PMID: 35809878 DOI: 10.1016/j.neulet.2022.136774] [Reference Citation Analysis]
6 Zhao P, Jiang T, Wang H, Jia X, Li A, Yuan J, Luo Q, Li X, Gong H. Simultaneously cholinergic projection in Ascending and Descending Circuits from Midbrain.. [DOI: 10.1101/2022.06.05.494860] [Reference Citation Analysis]
7 Zhao P, Wang H, Li A, Sun Q, Jiang T, Li X, Gong H. The Mesoscopic Connectome of the Cholinergic Pontomesencephalic Tegmentum. Front Neuroanat 2022;16:843303. [DOI: 10.3389/fnana.2022.843303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lv Y, Jing M, Li P, Zhao T, Pang C, Lu G, Wang Z, Wu N, Hu G, Song R, Li J. Aquaporin-4 deletion attenuates opioid-induced addictive behaviours associated with dopamine levels in nucleus accumbens. Neuropharmacology 2022. [DOI: 10.1016/j.neuropharm.2022.108986] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Merkel R, Moreno A, Zhang Y, Herman R, Ben Nathan J, Zeb S, Rahematpura S, Stecyk K, Milliken BT, Hayes MR, Doyle RP, Schmidt HD. A novel approach to treating opioid use disorders: Dual agonists of glucagon-like peptide-1 receptors and neuropeptide Y2 receptors. Neurosci Biobehav Rev 2021;131:1169-79. [PMID: 34715149 DOI: 10.1016/j.neubiorev.2021.10.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Jhou TC. The rostromedial tegmental (RMTg) "brake" on dopamine and behavior: A decade of progress but also much unfinished work. Neuropharmacology 2021;198:108763. [PMID: 34433088 DOI: 10.1016/j.neuropharm.2021.108763] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
11 Alaei H, Ghobadi Pour M. Stimulation and transient inactivation of ventral tegmental area modify reinstatement of acquisition phase of morphine-induced conditioned place preference in male rats. Brain Res Bull 2021;176:130-41. [PMID: 34480979 DOI: 10.1016/j.brainresbull.2021.08.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Shokri-Kojori E, Wang GJ, Volkow ND. Naloxone precipitated withdrawal increases dopamine release in the dorsal striatum of opioid dependent men. Transl Psychiatry 2021;11:445. [PMID: 34471102 DOI: 10.1038/s41398-021-01548-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Bath R, Bucholz T, Buros AF, Singh D, Smith KE, Veltri CA, Grundmann O. Self-reported Health Diagnoses and Demographic Correlates With Kratom Use: Results From an Online Survey. J Addict Med 2020;14:244-52. [PMID: 31567595 DOI: 10.1097/ADM.0000000000000570] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 19.0] [Reference Citation Analysis]
14 He T, Chen W, Fan Y, Xu X, Wang Z, Li N, Guo H, Lu X, Ge F, Guan X. A novel cholinergic neural pathway and its role in the drug relapse.. [DOI: 10.1101/2021.05.12.443812] [Reference Citation Analysis]
15 Xie X, Gu J, Zhuang D, Shen W, Li L, Liu Y, Xu W, Hong Q, Chen W, Zhou W, Liu H. Association between GABA receptor delta subunit gene polymorphisms and heroin addiction. Neurosci Lett 2021;755:135905. [PMID: 33887383 DOI: 10.1016/j.neulet.2021.135905] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Liu J, Seaman R Jr, Johnson B, Wu R, Vu J, Tian J, Zhang Y, Li JX. Activation of trace amine-associated receptor 1 selectively attenuates the reinforcing effects of morphine. Br J Pharmacol 2021;178:933-45. [PMID: 33247948 DOI: 10.1111/bph.15335] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
17 Galaj E, Xi ZX. Progress in opioid reward research: From a canonical two-neuron hypothesis to two neural circuits. Pharmacol Biochem Behav 2021;200:173072. [PMID: 33227308 DOI: 10.1016/j.pbb.2020.173072] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
18 Galaj E, Han X, Shen H, Jordan CJ, He Y, Humburg B, Bi GH, Xi ZX. Dissecting the Role of GABA Neurons in the VTA versus SNr in Opioid Reward. J Neurosci 2020;40:8853-69. [PMID: 33046548 DOI: 10.1523/JNEUROSCI.0988-20.2020] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
19 Ribeiro-Carvalho A, Lima CS, Dutra-Tavares AC, Nunes F, Nunes-Freitas AL, Filgueiras CC, Manhães AC, Meyer A, Abreu-Villaça Y. Mood-related behavioral and neurochemical alterations in mice exposed to low chlorpyrifos levels during the brain growth spurt. PLoS One 2020;15:e0239017. [PMID: 33007016 DOI: 10.1371/journal.pone.0239017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
20 Severino AL, Mittal N, Hakimian JK, Velarde N, Minasyan A, Albert R, Torres C, Romaneschi N, Johnston C, Tiwari S, Lee AS, Taylor AM, Gavériaux-Ruff C, Kieffer BL, Evans CJ, Cahill CM, Walwyn WM. μ-Opioid Receptors on Distinct Neuronal Populations Mediate Different Aspects of Opioid Reward-Related Behaviors. eNeuro 2020;7:ENEURO. [PMID: 32859725 DOI: 10.1523/ENEURO.0146-20.2020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
21 Taylor NE, Long H, Pei J, Kukutla P, Phero A, Hadaegh F, Abdelnabi A, Solt K, Brenner GJ. The rostromedial tegmental nucleus: a key modulator of pain and opioid analgesia. Pain 2019;160:2524-34. [PMID: 31246732 DOI: 10.1097/j.pain.0000000000001647] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
22 Li Y, Wu H, Zhang R, Shu G, Wang S, Gao P, Zhu X, Jiang Q, Wang L. Diet containing stearic acid increases food reward-related behaviors in mice compared with oleic acid. Brain Res Bull 2020;164:45-54. [PMID: 32822805 DOI: 10.1016/j.brainresbull.2020.08.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhu C, Wang B, Yin J, Xue Q, Gao S, Xing L, Wang H, Liu W, Liu X. Risk factors for postoperative delirium after spinal surgery: a systematic review and meta-analysis. Aging Clin Exp Res 2020;32:1417-34. [PMID: 31471892 DOI: 10.1007/s40520-019-01319-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
24 Galaj E, Newman AH, Xi ZX. Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges. Neurosci Biobehav Rev 2020;114:38-52. [PMID: 32376243 DOI: 10.1016/j.neubiorev.2020.04.024] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
25 Moses TEH, Burmeister M, Greenwald MK. Heroin delay discounting and impulsivity: Modulation by DRD1 genetic variation. Addict Biol 2020;25:e12777. [PMID: 31192519 DOI: 10.1111/adb.12777] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Buie N, Sodha D, Scheinman SB, Steidl S. Rewarding effects of M4 but not M3 muscarinic cholinergic receptor antagonism in the rostromedial tegmental nucleus. Behav Brain Res 2020;379:112340. [PMID: 31697984 DOI: 10.1016/j.bbr.2019.112340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Mascia P, Wang Q, Brown J, Nesbitt KM, Kennedy RT, Vezina P. Maladaptive consequences of repeated intermittent exposure to uncertainty. Prog Neuropsychopharmacol Biol Psychiatry 2020;99:109864. [PMID: 31952958 DOI: 10.1016/j.pnpbp.2020.109864] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Fulcher N, Azzopardi E, De Oliveira C, Hudson R, Schormans AL, Zaman T, Allman BL, Laviolette SR, Schmid S. Deciphering midbrain mechanisms underlying prepulse inhibition of startle. Prog Neurobiol 2020;185:101734. [PMID: 31863802 DOI: 10.1016/j.pneurobio.2019.101734] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
29 Moreno-rius J. Opioid addiction and the cerebellum. Neuroscience & Biobehavioral Reviews 2019;107:238-51. [DOI: 10.1016/j.neubiorev.2019.09.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
30 de Moura FB, Kohut SJ, Bergman J. Medications development for food-based and drug use disorders. Adv Pharmacol 2019;86:197-236. [PMID: 31378252 DOI: 10.1016/bs.apha.2019.04.005] [Reference Citation Analysis]
31 Teal LB, Gould RW, Felts AS, Jones CK. Selective allosteric modulation of muscarinic acetylcholine receptors for the treatment of schizophrenia and substance use disorders. Adv Pharmacol 2019;86:153-96. [PMID: 31378251 DOI: 10.1016/bs.apha.2019.05.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
32 Khalil R, Humann J. Testosterone modulation of ethanol effects on the �‑opioid receptor kinetics in castrated rats. biom rep 2019. [DOI: 10.3892/br.2019.1230] [Reference Citation Analysis]
33 Bigand T, Wilson M. Overeating during painful episodes among adults with chronic pain: A preliminary study. Appetite 2019;137:99-103. [DOI: 10.1016/j.appet.2019.02.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
34 Glover EJ, Starr EM, Chao Y, Jhou TC, Chandler LJ. Inhibition of the rostromedial tegmental nucleus reverses alcohol withdrawal-induced anxiety-like behavior. Neuropsychopharmacology 2019;44:1896-905. [PMID: 31060041 DOI: 10.1038/s41386-019-0406-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
35 Bambico FR, Li Z, Oliveira C, Mcneill S, Diwan M, Raymond R, Nobrega JN. Rostrocaudal subregions of the ventral tegmental area are differentially impacted by chronic stress. Psychopharmacology 2019;236:1917-29. [DOI: 10.1007/s00213-019-5177-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
36 Leite Junior JB, de Mello Bastos JM, Samuels RI, Carey RJ, Carrera MP. Reversal of morphine conditioned behavior by an anti-dopaminergic post-trial drug treatment during re-consolidation. Behavioural Brain Research 2019;359:771-82. [DOI: 10.1016/j.bbr.2018.08.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
37 Butler MJ, Eckel LA. Eating as a motivated behavior: modulatory effect of high fat diets on energy homeostasis, reward processing and neuroinflammation. Integr Zool 2018;13:673-86. [PMID: 29851251 DOI: 10.1111/1749-4877.12340] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
38 Wu J, Cui R, Sun C, Li X. 奖赏环路与阿片成瘾:喙内侧被盖核的调节作用. Adv Psychol Sci 2019;27:60-69. [DOI: 10.3724/sp.j.1042.2019.00060] [Reference Citation Analysis]
39 Wu X, Xie S, Wang L, Fan P, Ge S, Xie XQ, Wu W. A computational strategy for finding novel targets and therapeutic compounds for opioid dependence. PLoS One 2018;13:e0207027. [PMID: 30403753 DOI: 10.1371/journal.pone.0207027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
40 Sun Y, Zhang Y, Zhang D, Chang S, Jing R, Yue W, Lu L, Chen D, Sun Y, Fan Y, Shi J. GABRA2 rs279858-linked variants are associated with disrupted structural connectome of reward circuits in heroin abusers. Transl Psychiatry 2018;8:138. [PMID: 30061709 DOI: 10.1038/s41398-018-0180-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
41 Wu X, Xie S, Wang L, Fan P, Ge S, Xie X, Wu W. A computational strategy for finding novel targets and therapeutic compounds for opioid dependence.. [DOI: 10.1101/359075] [Reference Citation Analysis]