BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hamacher D, Herold F, Wiegel P, Hamacher D, Schega L. Brain activity during walking: A systematic review. Neurosci Biobehav Rev. 2015;57:310-327. [PMID: 26306029 DOI: 10.1016/j.neubiorev.2015.08.002] [Cited by in Crossref: 134] [Cited by in F6Publishing: 120] [Article Influence: 19.1] [Reference Citation Analysis]
Number Citing Articles
1 Koren Y, Raanan Y, Parmet Y, Bar-haim S. Treading on the unknown—the feasibility of a novel approach to investigating the motor control of walking. Physiol Meas 2018;39:04NT01. [DOI: 10.1088/1361-6579/aab659] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Labriffe M, Annweiler C, Amirova LE, Gauquelin-Koch G, Ter Minassian A, Leiber LM, Beauchet O, Custaud MA, Dinomais M. Brain Activity during Mental Imagery of Gait Versus Gait-Like Plantar Stimulation: A Novel Combined Functional MRI Paradigm to Better Understand Cerebral Gait Control. Front Hum Neurosci 2017;11:106. [PMID: 28321186 DOI: 10.3389/fnhum.2017.00106] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
3 Swanson CW, Fling BW. Associations between gait coordination, variability and motor cortex inhibition in young and older adults. Experimental Gerontology 2018;113:163-72. [DOI: 10.1016/j.exger.2018.10.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
4 Huber SK, Knols RH, Arnet P, de Bruin ED. Motor-cognitive intervention concepts can improve gait in chronic stroke, but their effect on cognitive functions is unclear: A systematic review with meta-analyses. Neurosci Biobehav Rev 2021:S0149-7634(21)00506-6. [PMID: 34815131 DOI: 10.1016/j.neubiorev.2021.11.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Hamacher D, Brennicke M, Behrendt T, Alt P, Törpel A, Schega L. Motor-cognitive dual-tasking under hypoxia. Exp Brain Res 2017;235:2997-3001. [PMID: 28721516 DOI: 10.1007/s00221-017-5036-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
6 Herold F, Wiegel P, Scholkmann F, Thiers A, Hamacher D, Schega L. Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks. Neurophotonics 2017;4:041403. [PMID: 28924563 DOI: 10.1117/1.NPh.4.4.041403] [Cited by in Crossref: 87] [Cited by in F6Publishing: 44] [Article Influence: 17.4] [Reference Citation Analysis]
7 Jor'dan AJ, Poole VN, Iloputaife I, Milberg W, Manor B, Esterman M, Lipsitz LA. Executive Network Activation is Linked to Walking Speed in Older Adults: Functional MRI and TCD Ultrasound Evidence From the MOBILIZE Boston Study. J Gerontol A Biol Sci Med Sci 2017;72:1669-75. [PMID: 28449077 DOI: 10.1093/gerona/glx063] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
8 Krbot Skorić M, Crnošija L, Gabelić T, Adamec I, Habek M. Relationship Between Sensory Dysfunction and Walking Speed in Patients With Clinically Isolated Syndrome: . Journal of Clinical Neurophysiology 2018;35:65-70. [DOI: 10.1097/wnp.0000000000000431] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
9 Wagshul ME, Lucas M, Ye K, Izzetoglu M, Holtzer R. Multi-modal neuroimaging of dual-task walking: Structural MRI and fNIRS analysis reveals prefrontal grey matter volume moderation of brain activation in older adults. Neuroimage 2019;189:745-54. [PMID: 30710680 DOI: 10.1016/j.neuroimage.2019.01.045] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
10 Joshi S, Herrera RR, Springett DN, Weedon BD, Ramirez DZM, Holloway C, Dawes H, Ayaz H. Neuroergonomic Assessment of Wheelchair Control Using Mobile fNIRS. IEEE Trans Neural Syst Rehabil Eng 2020;28:1488-96. [PMID: 32386159 DOI: 10.1109/TNSRE.2020.2992382] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Spedden ME, Beck MM, Christensen MS, Dietz MJ, Karabanov AN, Geertsen SS, Nielsen JB, Lundbye-jensen J. Directed connectivity between primary and premotor areas underlying ankle force control in young and older adults. NeuroImage 2020;218:116982. [DOI: 10.1016/j.neuroimage.2020.116982] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Lacerenza M, Spinelli L, Buttafava M, Dalla Mora A, Zappa F, Pifferi A, Tosi A, Cozzi B, Torricelli A, Contini D. Monitoring the motor cortex hemodynamic response function in freely moving walking subjects: a time-domain fNIRS pilot study. Neurophotonics 2021;8:015006. [PMID: 33628861 DOI: 10.1117/1.NPh.8.1.015006] [Reference Citation Analysis]
13 Alcock L, Galna B, Perkins R, Lord S, Rochester L. Step length determines minimum toe clearance in older adults and people with Parkinson's disease. J Biomech 2018;71:30-6. [PMID: 29429622 DOI: 10.1016/j.jbiomech.2017.12.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
14 Gilat M, Bell PT, Ehgoetz Martens KA, Georgiades MJ, Hall JM, Walton CC, Lewis SJG, Shine JM. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease. Neuroimage 2017;152:207-20. [PMID: 28263926 DOI: 10.1016/j.neuroimage.2017.02.073] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 10.8] [Reference Citation Analysis]
15 Kim J, Lee G, Lee J, Kim YH. Changes in Cortical Activity during Preferred and Fast Speed Walking under Single- and Dual-Tasks in the Young-Old and Old-Old Elderly. Brain Sci 2021;11:1551. [PMID: 34942853 DOI: 10.3390/brainsci11121551] [Reference Citation Analysis]
16 Zou L, Loprinzi PD, Yu JJ, Yang L, Li C, Yeung AS, Kong Z, Chiou SY, Xiao T. Superior Effects of Modified Chen-Style Tai Chi versus 24-Style Tai Chi on Cognitive Function, Fitness, and Balance Performance in Adults over 55. Brain Sci 2019;9:E102. [PMID: 31060221 DOI: 10.3390/brainsci9050102] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
17 Godde B, Voelcker-Rehage C. Cognitive Resources Necessary for Motor Control in Older Adults Are Reduced by Walking and Coordination Training. Front Hum Neurosci 2017;11:156. [PMID: 28443006 DOI: 10.3389/fnhum.2017.00156] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
18 Lin MB, Huang Y. The impact of walking while using a smartphone on pedestrians’ awareness of roadside events. Accident Analysis & Prevention 2017;101:87-96. [DOI: 10.1016/j.aap.2017.02.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 20] [Article Influence: 9.4] [Reference Citation Analysis]
19 Walsh GS. Dynamics of Modular Neuromotor Control of Walking and Running during Single and Dual Task Conditions. Neuroscience 2021;465:1-10. [PMID: 33887387 DOI: 10.1016/j.neuroscience.2021.04.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Raffegeau TE, Haddad JM, Huber JE, Rietdyk S. Walking while talking: Young adults flexibly allocate resources between speech and gait. Gait Posture 2018;64:59-62. [PMID: 29859413 DOI: 10.1016/j.gaitpost.2018.05.029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
21 Chatterjee SA, Fox EJ, Daly JJ, Rose DK, Wu SS, Christou EA, Hawkins KA, Otzel DM, Butera KA, Skinner JW, Clark DJ. Interpreting Prefrontal Recruitment During Walking After Stroke: Influence of Individual Differences in Mobility and Cognitive Function. Front Hum Neurosci 2019;13:194. [PMID: 31316360 DOI: 10.3389/fnhum.2019.00194] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
22 Oh-park M. Interplay Between Cognition and Mobility in Older Adults. Ann Geriatr Med Res 2017;21:2-9. [DOI: 10.4235/agmr.2017.21.1.2] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
23 Oldham JR, Howell DR, Knight CA, Crenshaw JR, Buckley TA. Gait Performance Is Associated with Subsequent Lower Extremity Injury following Concussion. Med Sci Sports Exerc 2020;52:2279-85. [PMID: 33064402 DOI: 10.1249/MSS.0000000000002385] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
24 Richards R, van der Esch M, van den Noort JC, Harlaar J. The learning process of gait retraining using real-time feedback in patients with medial knee osteoarthritis. Gait & Posture 2018;62:1-6. [DOI: 10.1016/j.gaitpost.2018.02.023] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
25 Menant JC, Maidan I, Alcock L, Al-Yahya E, Cerasa A, Clark DJ, de Bruin ED, Fraser S, Gramigna V, Hamacher D, Herold F, Holtzer R, Izzetoglu M, Lim S, Pantall A, Pelicioni P, Peters S, Rosso AL, St George R, Stuart S, Vasta R, Vitorio R, Mirelman A. A consensus guide to using functional near-infrared spectroscopy in posture and gait research. Gait Posture 2020;82:254-65. [PMID: 32987345 DOI: 10.1016/j.gaitpost.2020.09.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
26 Conradsson D, Hinton DC, Paquette C. The effects of dual-tasking on temporal gait adaptation and de-adaptation to the split-belt treadmill in older adults. Exp Gerontol 2019;125:110655. [PMID: 31299212 DOI: 10.1016/j.exger.2019.110655] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
27 Bishnoi A, Holtzer R, Hernandez ME. Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies. Brain Sci 2021;11:291. [PMID: 33652706 DOI: 10.3390/brainsci11030291] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Brantley JA, Luu TP, Nakagome S, Zhu F, Contreras-Vidal JL. Full body mobile brain-body imaging data during unconstrained locomotion on stairs, ramps, and level ground. Sci Data 2018;5:180133. [PMID: 29989591 DOI: 10.1038/sdata.2018.133] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
29 Hramov AE, Maksimenko VA, Pisarchik AN. Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports 2021;918:1-133. [DOI: 10.1016/j.physrep.2021.03.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 15.0] [Reference Citation Analysis]
30 Hoang I, Ranchet M, Derollepot R, Moreau F, Paire-Ficout L. Measuring the Cognitive Workload During Dual-Task Walking in Young Adults: A Combination of Neurophysiological and Subjective Measures. Front Hum Neurosci 2020;14:592532. [PMID: 33328938 DOI: 10.3389/fnhum.2020.592532] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Mehra D, Tiwari A, Joshi D. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements. Comput Biol Med 2021;132:104350. [PMID: 33799217 DOI: 10.1016/j.compbiomed.2021.104350] [Reference Citation Analysis]
32 Joo SY, Cho YS, Lee KJ, Lee SY, Seo CH. Frontal lobe oxyhemoglobin levels in patients with lower extremity burns assessed using a functional near-Infrared spectroscopy device during usual walking: a pilot study. Comput Methods Biomech Biomed Engin 2021;24:115-21. [PMID: 32915075 DOI: 10.1080/10255842.2020.1812583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 [DOI: 10.1109/fuzz-ieee.2016.7737814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Tian Q, Chastan N, Bair WN, Resnick SM, Ferrucci L, Studenski SA. The brain map of gait variability in aging, cognitive impairment and dementia-A systematic review. Neurosci Biobehav Rev 2017;74:149-62. [PMID: 28115194 DOI: 10.1016/j.neubiorev.2017.01.020] [Cited by in Crossref: 66] [Cited by in F6Publishing: 56] [Article Influence: 13.2] [Reference Citation Analysis]
35 de Oliveira PCA, de Araújo TAB, Machado DGDS, Rodrigues AC, Bikson M, Andrade SM, Okano AH, Simplicio H, Pegado R, Morya E. Transcranial Direct Current Stimulation on Parkinson's Disease: Systematic Review and Meta-Analysis. Front Neurol 2021;12:794784. [PMID: 35082749 DOI: 10.3389/fneur.2021.794784] [Reference Citation Analysis]
36 Oliveira AS, Arguissain FG, Andersen OK. Cognitive Processing for Step Precision Increases Beta and Gamma Band Modulation During Overground Walking. Brain Topogr 2018;31:661-71. [DOI: 10.1007/s10548-018-0633-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
37 Jacobsen NSJ, Blum S, Witt K, Debener S. A walk in the park? Characterizing gait-related artifacts in mobile EEG recordings. Eur J Neurosci 2020. [PMID: 32909315 DOI: 10.1111/ejn.14965] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
38 Hamacher D, Hamacher D, Herold F, Schega L. Effect of dual tasks on gait variability in walking to auditory cues in older and young individuals. Exp Brain Res 2016;234:3555-63. [DOI: 10.1007/s00221-016-4754-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
39 Carson RG. Get a grip: individual variations in grip strength are a marker of brain health. Neurobiol Aging 2018;71:189-222. [PMID: 30172220 DOI: 10.1016/j.neurobiolaging.2018.07.023] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 13.5] [Reference Citation Analysis]
40 Learmonth YC, Ensari I, Motl RW. Cognitive Motor Interference in Multiple Sclerosis: Insights From a Systematic Quantitative Review. Arch Phys Med Rehabil 2017;98:1229-40. [PMID: 27543046 DOI: 10.1016/j.apmr.2016.07.018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 5.7] [Reference Citation Analysis]
41 Schack J, Pripp AH, Mirtaheri P, Steen H, Güler E, Gjøvaag T. Increased prefrontal cortical activation during challenging walking conditions in persons with lower limb amputation - an fNIRS observational study. Physiother Theory Pract 2020;:1-11. [PMID: 32367750 DOI: 10.1080/09593985.2020.1758979] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Teo WP, Goodwill AM, Hendy AM, Muthalib M, Macpherson H. Sensory manipulation results in increased dorsolateral prefrontal cortex activation during static postural balance in sedentary older adults: An fNIRS study. Brain Behav 2018;8:e01109. [PMID: 30230687 DOI: 10.1002/brb3.1109] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
43 Degen JL, Smart GL, Quinnell R, O’doherty KC, Rhodes P. Remaining Human in COVID-19: Dialogues on Psychogeography. Hu Arenas. [DOI: 10.1007/s42087-021-00233-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Herold F, Orlowski K, Börmel S, Müller NG. Cortical activation during balancing on a balance board. Human Movement Science 2017;51:51-8. [DOI: 10.1016/j.humov.2016.11.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
45 Koren Y, Mairon R, Sofer I, Parmet Y, Ben-Shahar O, Bar-Haim S. Vision, cognition, and walking stability in young adults. Sci Rep 2022;12:513. [PMID: 35017580 DOI: 10.1038/s41598-021-04540-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Coelho-Júnior HJ, Milano-Teixeira L, Rodrigues B, Bacurau R, Marzetti E, Uchida M. Relative Protein Intake and Physical Function in Older Adults: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2018;10:E1330. [PMID: 30235845 DOI: 10.3390/nu10091330] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 12.3] [Reference Citation Analysis]
47 Clark DJ, Manini TM, Ferris DP, Hass CJ, Brumback BA, Cruz-Almeida Y, Pahor M, Reuter-Lorenz PA, Seidler RD. Multimodal Imaging of Brain Activity to Investigate Walking and Mobility Decline in Older Adults (Mind in Motion Study): Hypothesis, Theory, and Methods. Front Aging Neurosci 2019;11:358. [PMID: 31969814 DOI: 10.3389/fnagi.2019.00358] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
48 Nóbrega-sousa P, Gobbi LTB, Orcioli-silva D, Conceição NRD, Beretta VS, Vitório R. Prefrontal Cortex Activity During Walking: Effects of Aging and Associations With Gait and Executive Function. Neurorehabil Neural Repair 2020;34:915-24. [DOI: 10.1177/1545968320953824] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
49 Nazary-moghadam S, Salavati M, Esteki A, Akhbari B, Keyhani S, Zeinalzadeh A. Gait speed is more challenging than cognitive load on the stride-to-stride variability in individuals with anterior cruciate ligament deficiency. The Knee 2019;26:88-96. [DOI: 10.1016/j.knee.2018.11.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
50 Corporaal SHA, Bruijn SM, Hoogkamer W, Chalavi S, Boisgontier MP, Duysens J, Swinnen SP, Gooijers J. Different neural substrates for precision stepping and fast online step adjustments in youth. Brain Struct Funct 2018;223:2039-53. [PMID: 29368052 DOI: 10.1007/s00429-017-1586-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
51 Kurebayashi Y, Mori K, Otaki J. Effects of mild-intensity physical exercise on neurocognition in inpatients with schizophrenia: A pilot randomized controlled trial. Perspect Psychiatr Care 2021. [PMID: 34170518 DOI: 10.1111/ppc.12896] [Reference Citation Analysis]
52 Bayot M, Dujardin K, Tard C, Defebvre L, Bonnet CT, Allart E, Delval A. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiologie Clinique 2018;48:361-75. [DOI: 10.1016/j.neucli.2018.10.003] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 14.5] [Reference Citation Analysis]
53 Berger A, Horst F, Steinberg F, Thomas F, Müller-Eising C, Schöllhorn WI, Doppelmayr M. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people. J Neuroeng Rehabil 2019;16:161. [PMID: 31882008 DOI: 10.1186/s12984-019-0636-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
54 Hamacher D, Rudolf M, Lohmann C, Schega L. Pain severity reduction in subjects with knee osteoarthritis decreases motor-cognitive dual-task costs. Clinical Biomechanics 2016;39:62-4. [DOI: 10.1016/j.clinbiomech.2016.09.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
55 Lo OY, Halko MA, Zhou J, Harrison R, Lipsitz LA, Manor B. Gait Speed and Gait Variability Are Associated with Different Functional Brain Networks. Front Aging Neurosci 2017;9:390. [PMID: 29249961 DOI: 10.3389/fnagi.2017.00390] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
56 Bigliassi M. Neural basis of attentional focus during endurance exercise. International Review of Sport and Exercise Psychology 2021;14:74-101. [DOI: 10.1080/1750984x.2020.1762240] [Reference Citation Analysis]
57 Al-Yahya E, Mahmoud W, Meester D, Esser P, Dawes H. Neural Substrates of Cognitive Motor Interference During Walking; Peripheral and Central Mechanisms. Front Hum Neurosci 2018;12:536. [PMID: 30687049 DOI: 10.3389/fnhum.2018.00536] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
58 Vitorio R, Stuart S, Mancini M. Executive Control of Walking in People With Parkinson's Disease With Freezing of Gait. Neurorehabil Neural Repair 2020;34:1138-49. [PMID: 33155506 DOI: 10.1177/1545968320969940] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
59 Świątkiewicz M, Fiedorowicz M, Orzeł J, Wełniak-Kamińska M, Bogorodzki P, Langfort J, Grieb P. Increases in Brain 1H-MR Glutamine and Glutamate Signals Following Acute Exhaustive Endurance Exercise in the Rat. Front Physiol 2017;8:19. [PMID: 28197103 DOI: 10.3389/fphys.2017.00019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
60 Bollaert RE, Poe K, Hubbard EA, Motl RW, Pilutti LA, Johnson CL, Sutton BP. Associations of functional connectivity and walking performance in multiple sclerosis. Neuropsychologia 2018;117:8-12. [DOI: 10.1016/j.neuropsychologia.2018.05.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
61 Herold F, Hamacher D, Schega L, Müller NG. Thinking While Moving or Moving While Thinking - Concepts of Motor-Cognitive Training for Cognitive Performance Enhancement. Front Aging Neurosci 2018;10:228. [PMID: 30127732 DOI: 10.3389/fnagi.2018.00228] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
62 Mirzaee-Kakhki M, Ernst A, de Las Heras D, Urbaniak M, Stobiecki F, Gördes J, Reginka M, Ehresmann A, Fischer TM. Simultaneous polydirectional transport of colloidal bipeds. Nat Commun 2020;11:4670. [PMID: 32938912 DOI: 10.1038/s41467-020-18467-9] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
63 Lin NH, Liu CH, Lee P, Guo LY, Sung JL, Yen CW, Liaw LJ. Backward Walking Induces Significantly Larger Upper-Mu-Rhythm Suppression Effects Than Forward Walking Does. Sensors (Basel) 2020;20:E7250. [PMID: 33348821 DOI: 10.3390/s20247250] [Reference Citation Analysis]
64 Putzolu M, Samogin J, Cosentino C, Mezzarobba S, Bonassi G, Lagravinese G, Vato A, Mantini D, Avanzino L, Pelosin E. Neural oscillations during motor imagery of complex gait: an HdEEG study. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-07511-x] [Reference Citation Analysis]
65 Berger A, Horst F, Müller S, Steinberg F, Doppelmayr M. Current State and Future Prospects of EEG and fNIRS in Robot-Assisted Gait Rehabilitation: A Brief Review. Front Hum Neurosci 2019;13:172. [PMID: 31231200 DOI: 10.3389/fnhum.2019.00172] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 9.3] [Reference Citation Analysis]
66 Papegaaij S, Hortobágyi T, Godde B, Kaan WA, Erhard P, Voelcker-Rehage C. Neural correlates of motor-cognitive dual-tasking in young and old adults. PLoS One 2017;12:e0189025. [PMID: 29220349 DOI: 10.1371/journal.pone.0189025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
67 Lin MI, Lin KH. Walking while Performing Working Memory Tasks Changes the Prefrontal Cortex Hemodynamic Activations and Gait Kinematics. Front Behav Neurosci 2016;10:92. [PMID: 27242461 DOI: 10.3389/fnbeh.2016.00092] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
68 Hamacher D, Hamacher D, Herold F, Schega L. Are there differences in the dual-task walking variability of minimum toe clearance in chronic low back pain patients and healthy controls? Gait Posture 2016;49:97-101. [PMID: 27395449 DOI: 10.1016/j.gaitpost.2016.06.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
69 Chatterjee SA, Seidler RD, Skinner JW, Lysne PE, Sumonthee C, Wu SS, Cohen RA, Rose DK, Woods AJ, Clark DJ. Obstacle Negotiation in Older Adults: Prefrontal Activation Interpreted Through Conceptual Models of Brain Aging. Innov Aging 2020;4:igaa034. [PMID: 32995566 DOI: 10.1093/geroni/igaa034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Törpel A, Herold F, Hamacher D, Müller NG, Schega L. Strengthening the Brain-Is Resistance Training with Blood Flow Restriction an Effective Strategy for Cognitive Improvement? J Clin Med 2018;7:E337. [PMID: 30304785 DOI: 10.3390/jcm7100337] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
71 Poole VN, Lo OY, Wooten T, Iloputaife I, Lipsitz LA, Esterman M. Motor-Cognitive Neural Network Communication Underlies Walking Speed in Community-Dwelling Older Adults. Front Aging Neurosci 2019;11:159. [PMID: 31379552 DOI: 10.3389/fnagi.2019.00159] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
72 Zhao M, Bonassi G, Samogin J, Taberna GA, Porcaro C, Pelosin E, Avanzino L, Mantini D. Assessing Neurokinematic and Neuromuscular Connectivity During Walking Using Mobile Brain-Body Imaging. Front Neurosci 2022;16:912075. [DOI: 10.3389/fnins.2022.912075] [Reference Citation Analysis]
73 Temprado JJ, Julien-Vintrou M, Loddo E, Laurin J, Sleimen-Malkoun R. Cognitive functioning enhancement in older adults: is there an advantage of multicomponent training over Nordic walking? Clin Interv Aging 2019;14:1503-14. [PMID: 31686795 DOI: 10.2147/CIA.S211568] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
74 Smith JA, Gordon J, Kulig K. The influence of divided attention on walking turns: Effects on gait control in young adults with and without a history of low back pain. Gait Posture 2017;58:498-503. [PMID: 28950249 DOI: 10.1016/j.gaitpost.2017.09.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
75 Fettrow T, Hupfeld K, Tays G, Clark DJ, Reuter-Lorenz PA, Seidler RD. Brain activity during walking in older adults: Implications for compensatory versus dysfunctional accounts. Neurobiol Aging 2021;105:349-64. [PMID: 34182403 DOI: 10.1016/j.neurobiolaging.2021.05.015] [Reference Citation Analysis]
76 Kalron A, Allali G, Achiron A. Neural correlates of gait variability in people with multiple sclerosis with fall history. Eur J Neurol 2018;25:1243-9. [PMID: 29806963 DOI: 10.1111/ene.13689] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
77 Vitorio R, Stuart S, Rochester L, Alcock L, Pantall A. fNIRS response during walking — Artefact or cortical activity? A systematic review. Neuroscience & Biobehavioral Reviews 2017;83:160-72. [DOI: 10.1016/j.neubiorev.2017.10.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 68] [Article Influence: 15.0] [Reference Citation Analysis]
78 DiSalvio NL, Rosano C, Aizenstein HJ, Redfern MS, Furman JM, Jennings JR, Whitney SL, Sparto PJ. Gray Matter Regions Associated With Functional Mobility in Community-Dwelling Older Adults. J Am Geriatr Soc 2020;68:1023-8. [PMID: 31889301 DOI: 10.1111/jgs.16309] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
79 Zhao M, Bonassi G, Samogin J, Taberna GA, Pelosin E, Nieuwboer A, Avanzino L, Mantini D. Frequency-dependent modulation of neural oscillations across the gait cycle. Hum Brain Mapp 2022. [PMID: 35384123 DOI: 10.1002/hbm.25856] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
80 Zhou J, Poole V, Wooten T, Lo OY, Iloputaife I, Manor B, Esterman M, Lipsitz LA. Multiscale Dynamics of Spontaneous Brain Activity Is Associated With Walking Speed in Older Adults. J Gerontol A Biol Sci Med Sci 2020;75:1566-71. [PMID: 31585008 DOI: 10.1093/gerona/glz231] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
81 Warmerdam E, Romijnders R, Hansen C, Elshehabi M, Zimmermann M, Metzger FG, von Thaler AK, Berg D, Schmidt G, Maetzler W. Arm swing responsiveness to dopaminergic medication in Parkinson's disease depends on task complexity. NPJ Parkinsons Dis 2021;7:89. [PMID: 34611152 DOI: 10.1038/s41531-021-00235-1] [Reference Citation Analysis]
82 Fleddermann MT, Zentgraf K. Tapping the Full Potential? Jumping Performance of Volleyball Athletes in Game-Like Situations. Front Psychol 2018;9:1375. [PMID: 30131739 DOI: 10.3389/fpsyg.2018.01375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
83 Paraskevoudi N, Balcı F, Vatakis A. “Walking” through the sensory, cognitive, and temporal degradations of healthy aging: Multisensory processing in aging. Ann N Y Acad Sci 2018;1426:72-92. [DOI: 10.1111/nyas.13734] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
84 Hamacher D, Hamacher D, Krowicki M, Schega L. Between-day test-retest reliability of gait variability in older individuals improves with a familiarization trial. Aging Clin Exp Res 2017;29:327-9. [PMID: 26846558 DOI: 10.1007/s40520-016-0536-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
85 Gramigna V, Pellegrino G, Cerasa A, Cutini S, Vasta R, Olivadese G, Martino I, Quattrone A. Near-Infrared Spectroscopy in Gait Disorders: Is It Time to Begin? Neurorehabil Neural Repair 2017;31:402-12. [PMID: 28196453 DOI: 10.1177/1545968317693304] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
86 Lim SB, Louie DR, Peters S, Liu-Ambrose T, Boyd LA, Eng JJ. Brain activity during real-time walking and with walking interventions after stroke: a systematic review. J Neuroeng Rehabil 2021;18:8. [PMID: 33451346 DOI: 10.1186/s12984-020-00797-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
87 Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med 2018;7:E466. [PMID: 30469482 DOI: 10.3390/jcm7120466] [Cited by in Crossref: 106] [Cited by in F6Publishing: 73] [Article Influence: 26.5] [Reference Citation Analysis]
88 Eggenberger P, Wolf M, Schumann M, de Bruin ED. Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults. Front Aging Neurosci 2016;8:66. [PMID: 27148041 DOI: 10.3389/fnagi.2016.00066] [Cited by in Crossref: 97] [Cited by in F6Publishing: 84] [Article Influence: 16.2] [Reference Citation Analysis]
89 Kline A, Gaina Ghiroaga C, Pittman D, Goodyear B, Ronsky J. EEG differentiates left and right imagined Lower Limb movement. Gait Posture 2021;84:148-54. [PMID: 33340844 DOI: 10.1016/j.gaitpost.2020.11.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 He Y, Luu TP, Nathan K, Nakagome S, Contreras-Vidal JL. A mobile brain-body imaging dataset recorded during treadmill walking with a brain-computer interface. Sci Data 2018;5:180074. [PMID: 29688217 DOI: 10.1038/sdata.2018.74] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
91 Bruijn SM, van Dieën JH. Control of human gait stability through foot placement. J R Soc Interface 2018;15:20170816. [PMID: 29875279 DOI: 10.1098/rsif.2017.0816] [Cited by in Crossref: 113] [Cited by in F6Publishing: 90] [Article Influence: 37.7] [Reference Citation Analysis]
92 Koren Y, Parmet Y, Bar-Haim S. Treading on the unknown increases prefrontal activity: A pilot fNIRS study. Gait Posture 2019;69:96-100. [PMID: 30690327 DOI: 10.1016/j.gaitpost.2019.01.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
93 Germain C, Perrot A, Tomasino C, Bonnal J, Ozsancak C, Auzou P, Prieur F. Effect of the Level of Physical Activity on Prefrontal Cortex Hemodynamics in Older Adults During Single- and Dual-Task Walking. J Aging Phys Act 2022;:1-9. [PMID: 35894956 DOI: 10.1123/japa.2021-0410] [Reference Citation Analysis]
94 de Lima-pardini AC, Zimeo Morais GA, Balardin JB, Coelho DB, Azzi NM, Teixeira LA, Sato JR. Measuring cortical motor hemodynamics during assisted stepping – An fNIRS feasibility study of using a walker. Gait & Posture 2017;56:112-8. [DOI: 10.1016/j.gaitpost.2017.05.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
95 Luu TP, Brantley JA, Nakagome S, Zhu F, Contreras-Vidal JL. Electrocortical correlates of human level-ground, slope, and stair walking. PLoS One 2017;12:e0188500. [PMID: 29190704 DOI: 10.1371/journal.pone.0188500] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
96 Gong L, Liu Y, Yi L, Fang J, Yang Y, Wei K. Abnormal Gait Patterns in Autism Spectrum Disorder and Their Correlations with Social Impairments. Autism Research 2020;13:1215-26. [DOI: 10.1002/aur.2302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
97 Salzman T, Aboualmagd A, Badawi H, Tobón-Vallejo D, Kim H, Dahroug L, Laamarti F, El Saddik A, Fraser S. Prefrontal Cortex Involvement during Dual-Task Stair Climbing in Healthy Older Adults: An fNIRS Study. Brain Sci 2021;11:71. [PMID: 33430358 DOI: 10.3390/brainsci11010071] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Hamacher D, Hamacher D, Törpel A, Krowicki M, Herold F, Schega L. The reliability of local dynamic stability in walking while texting and performing an arithmetical problem. Gait & Posture 2016;44:200-3. [DOI: 10.1016/j.gaitpost.2015.12.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
99 Morelli N, Heebner NR, Bergin RT, Quintana C, Hoch MC. The effect of cognitive dual-tasks on dynamic postural sway during gait using inertial measurement units. Physiol Meas 2020;41:045002. [PMID: 32176875 DOI: 10.1088/1361-6579/ab8050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
100 Terrier P. Fractal Fluctuations in Human Walking: Comparison Between Auditory and Visually Guided Stepping. Ann Biomed Eng 2016;44:2785-93. [PMID: 26903091 DOI: 10.1007/s10439-016-1573-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
101 Vova JA, Eggebrecht EM. Utilizing Functional Electrical Stimulation and Exoskeletons in Pediatrics: a Closer Look at Their Roles in Gait and Functional Changes in Cerebral Palsy. Curr Phys Med Rehabil Rep 2019;7:57-66. [DOI: 10.1007/s40141-019-00215-w] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
102 Spedden ME, Beck MM, West TO, Farmer SF, Nielsen JB, Lundbye-Jensen J. Dynamics of cortical and corticomuscular connectivity during planning and execution of visually guided steps in humans. Cereb Cortex 2022:bhac066. [PMID: 35238339 DOI: 10.1093/cercor/bhac066] [Reference Citation Analysis]
103 Hamacher D, Hamacher D, Rehfeld K, Schega L. Motor-cognitive dual-task training improves local dynamic stability of normal walking in older individuals. Clin Biomech (Bristol, Avon) 2016;32:138-41. [PMID: 26682629 DOI: 10.1016/j.clinbiomech.2015.11.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
104 Oh S, Song M, Kim J. Validating attentive locomotion training using interactive treadmill: an fNIRS study. J Neuroeng Rehabil 2018;15:122. [PMID: 30572919 DOI: 10.1186/s12984-018-0472-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
105 Toyomura A, Yokosawa K, Shimojo A, Fujii T, Kuriki S. Turning a cylindrical treadmill with feet: An MR-compatible device for assessment of the neural correlates of lower-limb movement. J Neurosci Methods 2018;307:14-22. [PMID: 29924979 DOI: 10.1016/j.jneumeth.2018.06.006] [Reference Citation Analysis]
106 Izzetoglu M, Holtzer R. Effects of Processing Methods on fNIRS Signals Assessed During Active Walking Tasks in Older Adults. IEEE Trans Neural Syst Rehabil Eng 2020;28:699-709. [PMID: 32070987 DOI: 10.1109/TNSRE.2020.2970407] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
107 Wilson J, Allcock L, Mc Ardle R, Taylor JP, Rochester L. The neural correlates of discrete gait characteristics in ageing: A structured review. Neurosci Biobehav Rev 2019;100:344-69. [PMID: 30552912 DOI: 10.1016/j.neubiorev.2018.12.017] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
108 Stuart S, Vitorio R, Morris R, Martini DN, Fino PC, Mancini M. Cortical activity during walking and balance tasks in older adults and in people with Parkinson's disease: A structured review. Maturitas 2018;113:53-72. [PMID: 29903649 DOI: 10.1016/j.maturitas.2018.04.011] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
109 Sandroff BM, Motl RW, Reed WR, Barbey AK, Benedict RHB, Deluca J. Integrative CNS Plasticity With Exercise in MS: The PRIMERS (PRocessing, Integration of Multisensory Exercise-Related Stimuli) Conceptual Framework. Neurorehabil Neural Repair 2018;32:847-62. [DOI: 10.1177/1545968318798938] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
110 Raichlen DA, Bharadwaj PK, Fitzhugh MC, Haws KA, Torre GA, Trouard TP, Alexander GE. Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls. Front Hum Neurosci 2016;10:610. [PMID: 28018192 DOI: 10.3389/fnhum.2016.00610] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
111 Broscheid KC, Hamacher D, Lamprecht J, Sailer M, Schega L. Inter-Session Reliability of Functional Near-Infrared Spectroscopy at the Prefrontal Cortex While Walking in Multiple Sclerosis. Brain Sci 2020;10:E643. [PMID: 32957682 DOI: 10.3390/brainsci10090643] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
112 Jensen P, Frisk R, Spedden ME, Geertsen SS, Bouyer LJ, Halliday DM, Nielsen JB. Using Corticomuscular and Intermuscular Coherence to Assess Cortical Contribution to Ankle Plantar Flexor Activity During Gait. J Mot Behav 2019;51:668-80. [PMID: 30657030 DOI: 10.1080/00222895.2018.1563762] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
113 Walsh GS, Taylor Z. Complexity, symmetry and variability of forward and backward walking at different speeds and transfer effects on forward walking: Implications for neural control. Journal of Biomechanics 2019;97:109377. [DOI: 10.1016/j.jbiomech.2019.109377] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
114 Krasovsky T, Weiss PL, Kizony R. A narrative review of texting as a visually-dependent cognitive-motor secondary task during locomotion. Gait Posture 2017;52:354-62. [PMID: 28043057 DOI: 10.1016/j.gaitpost.2016.12.027] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
115 Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of Human Balance Control: A Systematic Review. Front Hum Neurosci 2017;11:170. [PMID: 28443007 DOI: 10.3389/fnhum.2017.00170] [Cited by in Crossref: 59] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
116 Lou YT, Yang JJ, Ma YF, Zhen XC. Effects of different acupuncture methods combined with routine rehabilitation on gait of stroke patients. World J Clin Cases 2020; 8(24): 6282-6295 [PMID: 33392309 DOI: 10.12998/wjcc.v8.i24.6282] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Kurebayashi Y, Otaki J. Association between altered physical activity and neurocognitive function among people with schizophrenia: A minimum 6-months' follow-up study. Comprehensive Psychiatry 2017;77:45-52. [DOI: 10.1016/j.comppsych.2017.06.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
118 Lattari E, Costa SS, Campos C, de Oliveira AJ, Machado S, Maranhao Neto GA. Can transcranial direct current stimulation on the dorsolateral prefrontal cortex improves balance and functional mobility in Parkinson’s disease? Neuroscience Letters 2017;636:165-9. [DOI: 10.1016/j.neulet.2016.11.019] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 7.4] [Reference Citation Analysis]
119 Beck EN, Intzandt BN, Almeida QJ. Can Dual Task Walking Improve in Parkinson's Disease After External Focus of Attention Exercise? A Single Blind Randomized Controlled Trial. Neurorehabil Neural Repair 2018;32:18-33. [PMID: 29262749 DOI: 10.1177/1545968317746782] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
120 Crow JA, Fillingim RB. Working toward mechanistic pain phenotyping in osteoarthritis. Osteoarthritis Cartilage 2021:S1063-4584(21)00981-X. [PMID: 34875376 DOI: 10.1016/j.joca.2021.11.018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Oldham JR, Howell DR, Knight CA, Crenshaw JR, Buckley TA. Single-Task and Dual-Task Tandem Gait Performance Across Clinical Concussion Milestones in Collegiate Student-Athletes. Clin J Sport Med 2020. [PMID: 32852299 DOI: 10.1097/JSM.0000000000000836] [Reference Citation Analysis]
122 Baker S, Trevarrow M, Gehringer J, Bergwell H, Arpin D, Heinrichs-Graham E, Wilson TW, Kurz MJ. Gamma somatosensory cortical oscillations are attenuated during the stance phase of human walking. Neurosci Lett 2020;732:135090. [PMID: 32461106 DOI: 10.1016/j.neulet.2020.135090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
123 Berger A, Steinberg F, Thomas F, Doppelmayr M. Neural Correlates of Age-Related Changes in Precise Grip Force Regulation: A Combined EEG-fNIRS Study. Front Aging Neurosci 2020;12:594810. [PMID: 33362531 DOI: 10.3389/fnagi.2020.594810] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Noga BR, Sanchez FJ, Villamil LM, O'Toole C, Kasicki S, Olszewski M, Cabaj AM, Majczyński H, Sławińska U, Jordan LM. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion. Front Neural Circuits 2017;11:34. [PMID: 28579945 DOI: 10.3389/fncir.2017.00034] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
125 Linden DE, Turner DL. Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Curr Opin Neurol 2016;29:412-8. [PMID: 27213774 DOI: 10.1097/WCO.0000000000000340] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
126 Stuart S, Alcock L, Rochester L, Vitorio R, Pantall A. Monitoring multiple cortical regions during walking in young and older adults: Dual-task response and comparison challenges. International Journal of Psychophysiology 2019;135:63-72. [DOI: 10.1016/j.ijpsycho.2018.11.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
127 Herold F, Aye N, Hamacher D, Schega L. Towards the Neuromotor Control Processes of Steady-State and Speed-Matched Treadmill and Overground Walking. Brain Topogr 2019;32:472-6. [PMID: 30680671 DOI: 10.1007/s10548-019-00699-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
128 Hadoush H, Al-Jarrah M, Khalil H, Al-Sharman A, Al-Ghazawi S. Bilateral anodal transcranial direct current stimulation effect on balance and fearing of fall in patient with Parkinson's disease. NeuroRehabilitation 2018;42:63-8. [PMID: 29400676 DOI: 10.3233/NRE-172212] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
129 Lee BC, Choi J, Martin BJ. Roles of the prefrontal cortex in learning to time the onset of pre-existing motor programs. PLoS One 2020;15:e0241562. [PMID: 33166309 DOI: 10.1371/journal.pone.0241562] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
130 Nordin AD, Hairston WD, Ferris DP. Human electrocortical dynamics while stepping over obstacles. Sci Rep 2019;9:4693. [PMID: 30886202 DOI: 10.1038/s41598-019-41131-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
131 Bürki CN, Bridenbaugh SA, Reinhardt J, Stippich C, Kressig RW, Blatow M. Imaging gait analysis: An fMRI dual task study. Brain Behav 2017;7:e00724. [PMID: 28828204 DOI: 10.1002/brb3.724] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
132 Kline A, Pittman D, Ronsky J, Goodyear B. Differentiating the Brain's involvement in Executed and Imagined Stepping using fMRI. Behav Brain Res 2020;394:112829. [PMID: 32717374 DOI: 10.1016/j.bbr.2020.112829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
133 Agathos CP, Ramanoël S, Bécu M, Bernardin D, Habas C, Arleo A. Postural Control While Walking Interferes With Spatial Learning in Older Adults Navigating in a Real Environment. Front Aging Neurosci 2020;12:588653. [PMID: 33281600 DOI: 10.3389/fnagi.2020.588653] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
134 de Tommaso M, Ricci K, Montemurno A, Vecchio E, Invitto S. Walking-Related Dual-Task Interference in Early-to-Middle-Stage Huntington's Disease: An Auditory Event Related Potential Study. Front Psychol 2017;8:1292. [PMID: 28824485 DOI: 10.3389/fpsyg.2017.01292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
135 Lucas M, Wagshul ME, Izzetoglu M, Holtzer R. Moderating Effect of White Matter Integrity on Brain Activation During Dual-Task Walking in Older Adults. J Gerontol A Biol Sci Med Sci 2019;74:435-41. [PMID: 29917044 DOI: 10.1093/gerona/gly131] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
136 Postigo-Alonso B, Galvao-Carmona A, Benítez I, Conde-Gavilán C, Jover A, Molina S, Peña-Toledo MA, Agüera E. Cognitive-motor interference during gait in patients with Multiple Sclerosis: a mixed methods Systematic Review. Neurosci Biobehav Rev 2018;94:126-48. [PMID: 30189226 DOI: 10.1016/j.neubiorev.2018.08.016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
137 Mirzaee-Kakhki M, Ernst A, de Las Heras D, Urbaniak M, Stobiecki F, Tomita A, Huhnstock R, Koch I, Ehresmann A, Holzinger D, Fischer TM. Gauge invariant and gauge dependent aspects of topological walking colloidal bipeds. Soft Matter 2021;17:1663-74. [PMID: 33367385 DOI: 10.1039/d0sm01670e] [Reference Citation Analysis]
138 Kline A, Forkert ND, Felfeliyan B, Pittman D, Goodyear B, Ronsky J. fMRI-Informed EEG for brain mapping of imagined lower limb movement: Feasibility of a brain computer interface. J Neurosci Methods 2021;363:109339. [PMID: 34454954 DOI: 10.1016/j.jneumeth.2021.109339] [Reference Citation Analysis]