BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wilton DK, Stevens B. The contribution of glial cells to Huntington's disease pathogenesis. Neurobiol Dis 2020;143:104963. [PMID: 32593752 DOI: 10.1016/j.nbd.2020.104963] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Siew JJ, Chern Y, Khoo KH, Angata T. Roles of Siglecs in neurodegenerative diseases. Mol Aspects Med 2023;90:101141. [PMID: 36089405 DOI: 10.1016/j.mam.2022.101141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Andersen JV, Schousboe A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 2023;48:1100-28. [PMID: 36322369 DOI: 10.1007/s11064-022-03771-1] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Pepe G, Lenzi P, Capocci L, Marracino F, Pizzati L, Scarselli P, Di Pardo A, Fornai F, Maglione V. Treatment with the Glycosphingolipid Modulator THI Rescues Myelin Integrity in the Striatum of R6/2 HD Mice. Int J Mol Sci 2023;24:5956. [PMID: 36983032 DOI: 10.3390/ijms24065956] [Reference Citation Analysis]
4 Andersen JV, Schousboe A, Wellendorph P. Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem 2023;67:77-91. [PMID: 36806927 DOI: 10.1042/EBC20220208] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Khakh BS, Goldman SA. Astrocytic contributions to Huntington's disease pathophysiology. Ann N Y Acad Sci 2023. [PMID: 36864567 DOI: 10.1111/nyas.14977] [Reference Citation Analysis]
6 Yan S, Zheng X, Lin Y, Li C, Liu Z, Li J, Tu Z, Zhao Y, Huang C, Chen Y, Li J, Song X, Han B, Wang W, Liang W, Lai L, Li XJ, Li S. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nat Biomed Eng 2023. [PMID: 36797418 DOI: 10.1038/s41551-023-01007-3] [Reference Citation Analysis]
7 Joachimiak P, Ciesiołka A, Kozłowska E, Świtoński PM, Figura G, Ciołak A, Adamek G, Surdyka M, Kalinowska-Pośka Ż, Figiel M, Caron NS, Hayden MR, Fiszer A. Allele-specific quantitation of ATXN3 and HTT transcripts in polyQ disease models. BMC Biol 2023;21:17. [PMID: 36726088 DOI: 10.1186/s12915-023-01515-3] [Reference Citation Analysis]
8 Pepe G, Capocci L, Marracino F, Realini N, Lenzi P, Martinello K, Bovier TF, Bichell TJ, Scarselli P, Di Cicco C, Bowman AB, Digilio FA, Fucile S, Fornai F, Armirotti A, Parlato R, Di Pardo A, Maglione V. Treatment with THI, an inhibitor of sphingosine-1-phosphate lyase, modulates glycosphingolipid metabolism and results therapeutically effective in experimental models of Huntington's disease. Mol Ther 2023;31:282-99. [PMID: 36116006 DOI: 10.1016/j.ymthe.2022.09.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Walker WH, Liu JA, Nelson RJ. Disruptions of Circadian Rhythms and Sleep/Wake Cycles in Neurologic Disorders. Healthy Ageing and Longevity 2023. [DOI: 10.1007/978-3-031-22468-3_22] [Reference Citation Analysis]
10 Antunes FTT, De Souza AH, Figueira J, Binda NS, Carvalho VPR, Vieira LB, Gomez MV. Targeting N-type calcium channels in young-onset of some neurological diseases. Front Cell Dev Biol 2022;10:1090765. [PMID: 36601540 DOI: 10.3389/fcell.2022.1090765] [Reference Citation Analysis]
11 Wu J, Möhle L, Brüning T, Eiriz I, Rafehi M, Stefan K, Stefan SM, Pahnke J. A Novel Huntington's Disease Assessment Platform to Support Future Drug Discovery and Development. Int J Mol Sci 2022;23. [PMID: 36499090 DOI: 10.3390/ijms232314763] [Reference Citation Analysis]
12 Demais V, Pohl A, Wunderlich KA, Pfaller AM, Kaplan L, Barthélémy A, Dittrich R, Puig B, Giebel B, Hauck SM, Pfrieger FW, Grosche A. Release of VAMP5-positive extracellular vesicles by retinal Müller glia in vivo. J Extracell Vesicles 2022;11:e12254. [PMID: 36043482 DOI: 10.1002/jev2.12254] [Reference Citation Analysis]
13 Donnelly KM, Coleman CM, Fuller ML, Reed VL, Smerina D, Tomlinson DS, Pearce MMP. Hunting for the cause: Evidence for prion-like mechanisms in Huntington’s disease. Front Neurosci 2022;16:946822. [DOI: 10.3389/fnins.2022.946822] [Reference Citation Analysis]
14 Feigin A, Evans EE, Fisher TL, Leonard JE, Smith ES, Reader A, Mishra V, Manber R, Walters KA, Kowarski L, Oakes D, Siemers E, Kieburtz KD, Zauderer M; Huntington Study Group SIGNAL investigators. Pepinemab antibody blockade of SEMA4D in early Huntington's disease: a randomized, placebo-controlled, phase 2 trial. Nat Med 2022. [PMID: 35941373 DOI: 10.1038/s41591-022-01919-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022;10:1206. [PMID: 35625943 DOI: 10.3390/biomedicines10051206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Demais V, Pohl A, Wunderlich KA, Pfaller AM, Kaplan L, Barthélémy A, Dittrich R, Puig B, Giebel B, Hauck SM, Pfrieger FW, Grosche A. Release of VAMP5-positive extracellular vesicles by retinal Müller glia in vivo.. [DOI: 10.1101/2022.04.20.488918] [Reference Citation Analysis]
17 Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022;14:797220. [DOI: 10.3389/fnagi.2022.797220] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Kumar M, Nguyen NTP, Milanese M, Bonanno G. Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders. Biomolecules 2022;12:344. [DOI: 10.3390/biom12030344] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Kuijper EC, Toonen LJA, Overzier M, Tsonaka R, Hettne K, Roos M, van Roon-Mom WMC, Mina E. Huntington Disease Gene Expression Signatures in Blood Compared to Brain of YAC128 Mice as Candidates for Monitoring of Pathology. Mol Neurobiol 2022. [PMID: 35091961 DOI: 10.1007/s12035-021-02680-8] [Reference Citation Analysis]
20 Loy CT, Hannan AJ. Neurotoxicity in Huntington Disease. Handbook of Neurotoxicity 2022. [DOI: 10.1007/978-3-030-71519-9_140-1] [Reference Citation Analysis]
21 Loy CT, Hannan AJ. Neurotoxicity in Huntington Disease. Handbook of Neurotoxicity 2022. [DOI: 10.1007/978-3-031-15080-7_140] [Reference Citation Analysis]
22 Ostapiuk A, Urbanska EM. Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double-edged sword? CNS Neurosci Ther 2022;28:19-35. [PMID: 34862742 DOI: 10.1111/cns.13768] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
23 Wilton D, Mastro K, Heller M, Gergits F, Willing CR, Frouin A, Daggett A, Gu X, Kim A, Faull R, Jayadev S, Yednock T, Yang X, Stevens B. Microglia Mediate Early Corticostriatal Synapse Loss and Cognitive Dysfunction in Huntington’s Disease Through Complement-Dependent Mechanisms.. [DOI: 10.1101/2021.12.03.471180] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Villegas L, Nørremølle A, Freude K, Vilhardt F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease? Front Aging Neurosci 2021;13:736734. [PMID: 34803655 DOI: 10.3389/fnagi.2021.736734] [Reference Citation Analysis]
25 You H, Wu T, Du G, Huang Y, Zeng Y, Lin L, Chen D, Wu C, Li X, Burgunder J, Pei Z. Evaluation of Blood Glial Fibrillary Acidic Protein as a Potential Marker in Huntington's Disease. Front Neurol 2021;12:779890. [DOI: 10.3389/fneur.2021.779890] [Reference Citation Analysis]
26 Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021;22:12499. [PMID: 34830381 DOI: 10.3390/ijms222212499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021;10:2019. [PMID: 34440788 DOI: 10.3390/cells10082019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
28 Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021;196:108719. [PMID: 34273389 DOI: 10.1016/j.neuropharm.2021.108719] [Cited by in Crossref: 44] [Cited by in F6Publishing: 54] [Article Influence: 22.0] [Reference Citation Analysis]
29 Edamakanti CR, Opal P. Developmental Alterations in Adult-Onset Neurodegenerative Disorders: Lessons from Polyglutamine Diseases. Mov Disord 2021;36:1548-52. [PMID: 34014004 DOI: 10.1002/mds.28657] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Finsterwald C, Dias S, Magistretti PJ, Lengacher S. Ganglioside GM1 Targets Astrocytes to Stimulate Cerebral Energy Metabolism. Front Pharmacol 2021;12:653842. [PMID: 33995070 DOI: 10.3389/fphar.2021.653842] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
31 Seol B, Kim YD, Cho YS. Modeling Sialidosis with Neural Precursor Cells Derived from Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci 2021;22:4386. [PMID: 33922276 DOI: 10.3390/ijms22094386] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Martin E, Heidari R, Monnier V, Tricoire H. Genetic Screen in Adult Drosophila Reveals That dCBP Depletion in Glial Cells Mitigates Huntington Disease Pathology through a Foxo-Dependent Pathway. Int J Mol Sci 2021;22:3884. [PMID: 33918672 DOI: 10.3390/ijms22083884] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Brymer KJ, Barnes JR, Parsons MP. Entering a new era of quantifying glutamate clearance in health and disease. J Neurosci Res 2021;99:1598-617. [PMID: 33618436 DOI: 10.1002/jnr.24810] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
34 Sabnis RW. Novel Heteroaryl Compounds for Treating Huntington's Disease. ACS Med Chem Lett 2020;11:2348-9. [PMID: 33335647 DOI: 10.1021/acsmedchemlett.0c00529] [Reference Citation Analysis]
35 Yu X, Nagai J, Marti-Solano M, Soto JS, Coppola G, Babu MM, Khakh BS. Context-Specific Striatal Astrocyte Molecular Responses Are Phenotypically Exploitable. Neuron 2020;108:1146-1162.e10. [PMID: 33086039 DOI: 10.1016/j.neuron.2020.09.021] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
36 Manickam N, Radhakrishnan RK, Vergil Andrews JF, Selvaraj DB, Kandasamy M. Cell cycle re-entry of neurons and reactive neuroblastosis in Huntington's disease: Possibilities for neural-glial transition in the brain. Life Sci 2020;263:118569. [PMID: 33049278 DOI: 10.1016/j.lfs.2020.118569] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]