BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Novello S, Arcuri L, Dovero S, Dutheil N, Shimshek DR, Bezard E, Morari M. G2019S LRRK2 mutation facilitates α-synuclein neuropathology in aged mice. Neurobiol Dis 2018;120:21-33. [PMID: 30172844 DOI: 10.1016/j.nbd.2018.08.018] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang D, Zhou L, Shi Y, Liu J, Wei H, Tong Q, He H, Wu T. Increased Free Water in the Substantia Nigra in Asymptomatic LRRK2 G2019S Mutation Carriers. Mov Disord 2022. [PMID: 36253640 DOI: 10.1002/mds.29253] [Reference Citation Analysis]
2 Afridi R, Rahman MH, Suk K. Implications of glial metabolic dysregulation in the pathophysiology of neurodegenerative diseases. Neurobiol Dis 2022;174:105874. [PMID: 36154877 DOI: 10.1016/j.nbd.2022.105874] [Reference Citation Analysis]
3 Fonseca-ornelas L, Stricker JMS, Soriano-cruz S, Weykopf B, Dettmer U, Muratore CR, Scherzer CR, Selkoe DJ. Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α-synuclein in human neurons. npj Parkinsons Dis 2022;8:118. [DOI: 10.1038/s41531-022-00380-1] [Reference Citation Analysis]
4 Volta M. Lysosomal Pathogenesis of Parkinson's Disease: Insights From LRRK2 and GBA1 Rodent Models. Neurotherapeutics 2022. [PMID: 36085537 DOI: 10.1007/s13311-022-01290-z] [Reference Citation Analysis]
5 Zhang ZW, Tu H, Jiang M, Vanan S, Chia SY, Jang SE, Saw WT, Ong ZW, Ma DR, Zhou ZD, Xu J, Guo KH, Yu WP, Ling SC, Margolin RA, Chain DG, Zeng L, Tan EK. The APP intracellular domain promotes LRRK2 expression to enable feed-forward neurodegenerative mechanisms in Parkinson's disease. Sci Signal 2022;15:eabk3411. [PMID: 35998231 DOI: 10.1126/scisignal.abk3411] [Reference Citation Analysis]
6 Thakur G, Kumar V, Lee KW, Won C. Structural Insights and Development of LRRK2 Inhibitors for Parkinson’s Disease in the Last Decade. Genes 2022;13:1426. [DOI: 10.3390/genes13081426] [Reference Citation Analysis]
7 Chen Y, Yin Q, Cheng XY, Zhang JR, Jin H, Li K, Mao CJ, Wang F, Bei HZ, Liu CF. G2019S LRRK2 Mutation Enhances MPP+-Induced Inflammation of Human Induced Pluripotent Stem Cells-Differentiated Dopaminergic Neurons. Front Neurosci 2022;16:947927. [PMID: 35873822 DOI: 10.3389/fnins.2022.947927] [Reference Citation Analysis]
8 Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022;23:6808. [PMID: 35743250 DOI: 10.3390/ijms23126808] [Reference Citation Analysis]
9 Domenicale C, Mercatelli D, Albanese F, Novello S, Vincenzi F, Varani K, Morari M. Dopamine Transporter, PhosphoSerine129 α-Synuclein and α-Synuclein Levels in Aged LRRK2 G2019S Knock-In and Knock-Out Mice. Biomedicines 2022;10:881. [DOI: 10.3390/biomedicines10040881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Ho DH, Nam D, Seo M, Park SW, Seol W, Son I. LRRK2 Inhibition Mitigates the Neuroinflammation Caused by TLR2-Specific α-Synuclein and Alleviates Neuroinflammation-Derived Dopaminergic Neuronal Loss. Cells 2022;11:861. [PMID: 35269482 DOI: 10.3390/cells11050861] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Chang EES, Ho PW, Liu H, Pang SY, Leung C, Malki Y, Choi ZY, Ramsden DB, Ho S. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Transl Neurodegener 2022;11. [DOI: 10.1186/s40035-022-00285-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Sahoo S, Padhy AA, Kumari V, Shivani K, Mishra P. Therapeutic potential of leucine-rich repeat kinase 2 inhibitors for Parkinson's disease treatment. Protein Kinase Inhibitors 2022. [DOI: 10.1016/b978-0-323-91287-7.00011-9] [Reference Citation Analysis]
13 Novello S, Mercatelli D, Albanese F, Domenicale C, Brugnoli A, D'Aversa E, Vantaggiato S, Dovero S, Murtaj V, Presotto L, Borgatti M, Shimshek DR, Bezard E, Moresco RM, Belloli S, Morari M. In vivo susceptibility to energy failure parkinsonism and LRRK2 kinase activity. Neurobiol Dis 2022;162:105579. [PMID: 34871735 DOI: 10.1016/j.nbd.2021.105579] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
14 Piccoli G, Volta M. LRRK2 along the Golgi and lysosome connection: a jamming situation. Biochem Soc Trans 2021;49:2063-72. [PMID: 34495322 DOI: 10.1042/BST20201146] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Tan S, Gong X, Liu H, Yao X. Virtual Screening and Biological Activity Evaluation of New Potent Inhibitors Targeting LRRK2 Kinase Domain. ACS Chem Neurosci 2021;12:3214-24. [PMID: 34387082 DOI: 10.1021/acschemneuro.1c00399] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Albanese F, Mercatelli D, Finetti L, Lamonaca G, Pizzi S, Shimshek DR, Bernacchia G, Morari M. Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiol Dis 2021;159:105487. [PMID: 34419621 DOI: 10.1016/j.nbd.2021.105487] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
17 Zhang Q, Cheng X, Wu W, Yang S, You H, Ye Z, Liu N, Chen X, Pan X. Age-related LRRK2 G2019S Mutation Impacts Microglial Dopaminergic Fiber Refinement and Synaptic Pruning Involved in Abnormal Behaviors. J Mol Neurosci 2021. [PMID: 34409578 DOI: 10.1007/s12031-021-01896-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Regoni M, Zanetti L, Comai S, Mercatelli D, Novello S, Albanese F, Croci L, Consalez GG, Ciammola A, Valtorta F, Morari M, Sassone J. Early Dysfunction of Substantia Nigra Dopamine Neurons in the ParkinQ311X Mouse. Biomedicines 2021;9:514. [PMID: 34063112 DOI: 10.3390/biomedicines9050514] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Usmani A, Shavarebi F, Hiniker A. The Cell Biology of LRRK2 in Parkinson's Disease. Mol Cell Biol 2021;41:e00660-20. [PMID: 33526455 DOI: 10.1128/MCB.00660-20] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
20 Pischedda F, Cirnaru MD, Ponzoni L, Sandre M, Biosa A, Carrion MP, Marin O, Morari M, Pan L, Greggio E, Bandopadhyay R, Sala M, Piccoli G. LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation. Brain 2021;144:1509-25. [PMID: 33876242 DOI: 10.1093/brain/awab073] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
21 Sun X, Yu X, Zhang L, Zhao W, Wang M, Zhang Y, Li X, Gao R, Breger LS, Dovero S, Porras G, Fernagut PO, Dehay B, Bezard E, Qin C. Comparison of the expression and toxicity of AAV2/9 carrying the human A53T α-synuclein gene in presence or absence of WPRE. Heliyon 2021;7:e06302. [PMID: 33665452 DOI: 10.1016/j.heliyon.2021.e06302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 MacDougall G, Brown LY, Kantor B, Chiba-Falek O. The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Mol Ther 2021;29:949-72. [PMID: 33429080 DOI: 10.1016/j.ymthe.2021.01.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Kline EM, Houser MC, Herrick MK, Seibler P, Klein C, West A, Tansey MG. Genetic and Environmental Factors in Parkinson's Disease Converge on Immune Function and Inflammation. Mov Disord 2021;36:25-36. [PMID: 33314312 DOI: 10.1002/mds.28411] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
24 Bono F, Mutti V, Devoto P, Bolognin S, Schwamborn JC, Missale C, Fiorentini C. Impaired dopamine D3 and nicotinic acetylcholine receptor membrane localization in iPSCs-derived dopaminergic neurons from two Parkinson's disease patients carrying the LRRK2 G2019S mutation. Neurobiol Aging 2021;99:65-78. [PMID: 33422895 DOI: 10.1016/j.neurobiolaging.2020.12.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
25 Jeong GR, Lee BD. Pathological Functions of LRRK2 in Parkinson's Disease. Cells 2020;9:E2565. [PMID: 33266247 DOI: 10.3390/cells9122565] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
26 Regoni M, Cattaneo S, Mercatelli D, Novello S, Passoni A, Bagnati R, Davoli E, Croci L, Consalez GG, Albanese F, Zanetti L, Passafaro M, Serratto GM, Di Fonzo A, Valtorta F, Ciammola A, Taverna S, Morari M, Sassone J. Pharmacological antagonism of kainate receptor rescues dysfunction and loss of dopamine neurons in a mouse model of human parkin-induced toxicity. Cell Death Dis 2020;11:963. [PMID: 33173027 DOI: 10.1038/s41419-020-03172-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
27 Trinh D, Israwi AR, Arathoon LR, Gleave JA, Nash JE. The multi-faceted role of mitochondria in the pathology of Parkinson's disease. J Neurochem 2021;156:715-52. [PMID: 33616931 DOI: 10.1111/jnc.15154] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
28 Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020;13:153. [PMID: 32973447 DOI: 10.3389/fnmol.2020.00153] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
29 Shutinoski B, Hakimi M, Harmsen IE, Lunn M, Rocha J, Lengacher N, Zhou YY, Khan J, Nguyen A, Hake-Volling Q, El-Kodsi D, Li J, Alikashani A, Beauchamp C, Majithia J, Coombs K, Shimshek D, Marcogliese PC, Park DS, Rioux JD, Philpott DJ, Woulfe JM, Hayley S, Sad S, Tomlinson JJ, Brown EG, Schlossmacher MG. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci Transl Med 2019;11:eaas9292. [PMID: 31554740 DOI: 10.1126/scitranslmed.aas9292] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 22.5] [Reference Citation Analysis]
30 Zhao Y, Keshiya S, Perera G, Schramko L, Halliday GM, Dzamko N. LRRK2 kinase inhibitors reduce alpha-synuclein in human neuronal cell lines with the G2019S mutation. Neurobiol Dis 2020;144:105049. [PMID: 32800998 DOI: 10.1016/j.nbd.2020.105049] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
31 Mancini A, Mazzocchetti P, Sciaccaluga M, Megaro A, Bellingacci L, Beccano-Kelly DA, Di Filippo M, Tozzi A, Calabresi P. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Front Cell Neurosci 2020;14:158. [PMID: 32848606 DOI: 10.3389/fncel.2020.00158] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
32 Dues DJ, Moore DJ. LRRK2 and Protein Aggregation in Parkinson's Disease: Insights From Animal Models. Front Neurosci 2020;14:719. [PMID: 32733200 DOI: 10.3389/fnins.2020.00719] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
33 Shani V, Safory H, Szargel R, Wang N, Cohen T, Elghani FA, Hamza H, Savyon M, Radzishevsky I, Shaulov L, Rott R, Lim KL, Ross CA, Bandopadhyay R, Zhang H, Engelender S. Physiological and pathological roles of LRRK2 in the nuclear envelope integrity. Hum Mol Genet 2019;28:3982-96. [PMID: 31626293 DOI: 10.1093/hmg/ddz245] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
34 Sanyal A, Novis HS, Gasser E, Lin S, LaVoie MJ. LRRK2 Kinase Inhibition Rescues Deficits in Lysosome Function Due to Heterozygous GBA1 Expression in Human iPSC-Derived Neurons. Front Neurosci 2020;14:442. [PMID: 32499675 DOI: 10.3389/fnins.2020.00442] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
35 Taylor M, Alessi DR. Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson's disease. Curr Opin Cell Biol 2020;63:102-13. [PMID: 32036294 DOI: 10.1016/j.ceb.2020.01.001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 41] [Article Influence: 29.5] [Reference Citation Analysis]
36 Albanese F, Novello S, Morari M. Autophagy and LRRK2 in the Aging Brain. Front Neurosci 2019;13:1352. [PMID: 31920513 DOI: 10.3389/fnins.2019.01352] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
37 Zhao Y, Dzamko N. Recent Developments in LRRK2-Targeted Therapy for Parkinson's Disease. Drugs 2019;79:1037-51. [PMID: 31161537 DOI: 10.1007/s40265-019-01139-4] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 12.0] [Reference Citation Analysis]
38 Biagioni F, Ferese R, Limanaqi F, Madonna M, Lenzi P, Gambardella S, Fornai F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Research 2019;1719:157-75. [DOI: 10.1016/j.brainres.2019.05.035] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
39 Pischedda F, Cirnaru MD, Ponzoni L, Sandre M, Biosa A, Carrion MP, Marin O, Morari M, Pan L, Greggio E, Bandopadhyay R, Sala M, Piccoli G. LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation.. [DOI: 10.1101/721266] [Reference Citation Analysis]
40 Henderson MX, Cornblath EJ, Darwich A, Zhang B, Brown H, Gathagan RJ, Sandler RM, Bassett DS, Trojanowski JQ, Lee VMY. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat Neurosci 2019;22:1248-57. [PMID: 31346295 DOI: 10.1038/s41593-019-0457-5] [Cited by in Crossref: 129] [Cited by in F6Publishing: 134] [Article Influence: 43.0] [Reference Citation Analysis]
41 Bieri G, Brahic M, Bousset L, Couthouis J, Kramer NJ, Ma R, Nakayama L, Monbureau M, Defensor E, Schüle B, Shamloo M, Melki R, Gitler AD. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol 2019;137:961-80. [PMID: 30927072 DOI: 10.1007/s00401-019-01995-0] [Cited by in Crossref: 89] [Cited by in F6Publishing: 96] [Article Influence: 29.7] [Reference Citation Analysis]
42 Outeiro TF, Harvey K, Dominguez-Meijide A, Gerhardt E. LRRK2, alpha-synuclein, and tau: partners in crime or unfortunate bystanders? Biochem Soc Trans 2019;47:827-38. [PMID: 31085616 DOI: 10.1042/BST20180466] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
43 Lucas RM, Bauer CS, Chinnaiya K, Schwartzentruber A, Macdonald R, Collins MO, Aasly JO, Brønstad G, Ferraiuolo L, Mortiboys H, Vos KJD. LRRK2-mediated phosphorylation of HDAC6 regulates HDAC6-cytoplasmic dynein interaction and aggresome formation.. [DOI: 10.1101/554881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
44 Bieri G, Brahic M, Bousset L, Couthouis J, Kramer N, Ma R, Nakayama L, Monbureau M, Defensor E, Schuele B, Shamloo M, Melki R, Gitler AD. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons.. [DOI: 10.1101/522086] [Reference Citation Analysis]
45 Hu D, Niu JY, Xiong J, Nie SK, Zeng F, Zhang ZH. LRRK2 G2019S Mutation Inhibits Degradation of α-Synuclein in an In Vitro Model of Parkinson's Disease. Curr Med Sci 2018;38:1012-7. [PMID: 30536063 DOI: 10.1007/s11596-018-1977-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]