BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khandelwal G, Minocha T, Yadav SK, Chandrasekhar A, Maria Joseph Raj NP, Gupta SC, Kim S. All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy 2019;65:104016. [DOI: 10.1016/j.nanoen.2019.104016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 13] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Hu Y, Lin X, Qian X, Zhang L, Zhou J, Lu A. High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polymers 2022;291:119586. [DOI: 10.1016/j.carbpol.2022.119586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Clementi G, Cottone F, Di Michele A, Gammaitoni L, Mattarelli M, Perna G, López-suárez M, Baglio S, Trigona C, Neri I. Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting. Energies 2022;15:6227. [DOI: 10.3390/en15176227] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Adhikary P, Mahmud MAP, Solaiman T, Wang ZL. Recentadvances on biomechanical motion-driven triboelectric nanogenerators for drug delivery. Nano Today 2022;45:101513. [DOI: 10.1016/j.nantod.2022.101513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Fan C, Huang J, Mensah A, Long Z, Sun J, Wei Q. A high-performance and biodegradable tribopositive poly-ε-caprolactone/ethyl cellulose material. Cell Reports Physical Science 2022;3:101012. [DOI: 10.1016/j.xcrp.2022.101012] [Reference Citation Analysis]
5 Rani GM, Wu C, Motora KG, Umapathi R. Waste-to-energy: Utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. Journal of Cleaner Production 2022;363:132532. [DOI: 10.1016/j.jclepro.2022.132532] [Reference Citation Analysis]
6 Badatya S, Bhowal R, Mandal K, Srivastava AK, Gupta MK, Chopra D. Poling-Polarization-Mediated Centrosymmetric Charge-Transfer Organic-Cocrystal-Based Flexible Triboelectric Nanogenerator. ACS Appl Electron Mater . [DOI: 10.1021/acsaelm.2c00630] [Reference Citation Analysis]
7 Lai Z, Xu J, Bowen CR, Zhou S. Self-powered and self-sensing devices based on human motion. Joule 2022;6:1501-65. [DOI: 10.1016/j.joule.2022.06.013] [Reference Citation Analysis]
8 Kumar V, Kumar P, Deka R, Abbas Z, Mobin SM. Recent Development of Morphology-Controlled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. Chem Rec 2022;:e202200067. [PMID: 35686889 DOI: 10.1002/tcr.202200067] [Reference Citation Analysis]
9 Sathya Prasanna AP, Vivekananthan V, Khandelwal G, Alluri NR, Maria Joseph Raj NP, Anithkumar M, Kim S. Green Energy from Edible Materials: Triboelectrification-Enabled Sustainable Self-Powered Human Joint Movement Monitoring. ACS Sustainable Chem Eng 2022;10:6549-58. [DOI: 10.1021/acssuschemeng.1c08030] [Reference Citation Analysis]
10 Wu M, Wang X, Xia Y, Zhu Y, Zhu S, Jia C, Guo W, Li Q, Yan Z. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022;95:106967. [DOI: 10.1016/j.nanoen.2022.106967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
11 Šutka A, Lapčinskis L, Verners O, Ģērmane L, Smits K, Pludons A, Gaidukovs S, Jerāne I, Zubkins M, Pudzs K, Sherrell PC, Blums J. Bio‐Inspired Macromolecular Ordering of Elastomers for Enhanced Contact Electrification and Triboelectric Energy Harvesting. Adv Materials Technologies. [DOI: 10.1002/admt.202200162] [Reference Citation Analysis]
12 Li Q, Dai K, Zhang W, Wang X, You Z, Zhang H. Reprint of: Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence. Digital Signal Processing 2022. [DOI: 10.1016/j.dsp.2022.103570] [Reference Citation Analysis]
13 Saqib QM, Chougale MY, Khan MU, Shaukat RA, Kim J, Bhat KS, Bae J. Triboelectric nanogenerator based on lignocellulosic waste fruit shell tribopositive material: comparative analysis. Materials Today Sustainability 2022. [DOI: 10.1016/j.mtsust.2022.100146] [Reference Citation Analysis]
14 Liu Y, Wang G, Zhou Y, Liu Y. Advanced Technology Evolution Pathways of Nanogenerators: A Novel Framework Based on Multi-Source Data and Knowledge Graph. Nanomaterials 2022;12:838. [DOI: 10.3390/nano12050838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang T, Li S, Tao X, Yan Q, Wang X, Chen Y, Huang F, Li H, Chen X, Bian Z. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 2022;93:106787. [DOI: 10.1016/j.nanoen.2021.106787] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
16 Cataldi P, Lamanna L, Bertei C, Arena F, Rossi P, Liu M, Di Fonzo F, Papageorgiou DG, Luzio A, Caironi M. An Electrically Conductive Oleogel Paste for Edible Electronics. Adv Funct Materials 2022;32:2113417. [DOI: 10.1002/adfm.202113417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Xia R, Zhang R, Jie Y, Zhao W, Cao X, Wang Z. Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy 2022;92:106685. [DOI: 10.1016/j.nanoen.2021.106685] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
18 Chakraborty M, Kettle J, Dahiya R. Electronic Waste Reduction Through Devices and Printed Circuit Boards Designed for Circularity. IEEE Flex Electron 2022;1:4-23. [DOI: 10.1109/jflex.2022.3159258] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang W, Pang J, Su J, Li F, Li Q, Wang X, Wang J, Ibarlucea B, Liu X, Li Y, Zhou W, Wang K, Han Q, Liu L, Zang R, Rümmeli MH, Li Y, Liu H, Hu H, Cuniberti G. Applications of nanogenerators for biomedical engineering and healthcare systems. InfoMat. [DOI: 10.1002/inf2.12262] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
20 Zhou J, Wang H, Du C, Zhang D, Lin H, Chen Y, Xiong J. Cellulose for Sustainable Triboelectric Nanogenerators. Adv Energy and Sustain Res 2022;3:2100161. [DOI: 10.1002/aesr.202100161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
21 Charoonsuk T, Pongampai S, Pakawanit P, Vittayakorn N. Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure. Nano Energy 2021;89:106430. [DOI: 10.1016/j.nanoen.2021.106430] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
22 Saqib QM, Chougale MY, Khan MU, Shaukat RA, Kim J, Bae J, Lee HW, Park J, Kim MS, Lee BG. Natural seagrass tribopositive material based spray coatable triboelectric nanogenerator. Nano Energy 2021;89:106458. [DOI: 10.1016/j.nanoen.2021.106458] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Durukan MB, Cicek MO, Doganay D, Gorur MC, Çınar S, Unalan HE. Multifunctional and Physically Transient Supercapacitors, Triboelectric Nanogenerators, and Capacitive Sensors. Adv Funct Materials 2022;32:2106066. [DOI: 10.1002/adfm.202106066] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Sheng H, Zhang X, Liang J, Shao M, Xie E, Yu C, Lan W. Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv Healthc Mater 2021;10:e2100199. [PMID: 33930254 DOI: 10.1002/adhm.202100199] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
25 Parandeh S, Etemadi N, Kharaziha M, Chen G, Nashalian A, Xiao X, Chen J. Advances in Triboelectric Nanogenerators for Self‐Powered Regenerative Medicine. Adv Funct Materials 2021;31:2105169. [DOI: 10.1002/adfm.202105169] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
26 Yao L, Zhang Z, Zhang Q, Zhou Z, Yang H, Chen L. Modified organic polystyrene microspheres embedded into P(VDF-TrFE) with lotus-leaf microstructure enables high performance triboelectric nanogenerator. Nano Energy 2021;86:106128. [DOI: 10.1016/j.nanoen.2021.106128] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
27 Khandelwal G, Maria Joseph Raj NP, Kim S. Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators. Advanced Energy Materials 2021;11:2101170. [DOI: 10.1002/aenm.202101170] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
28 Ghosh SK, Park J, Na S, Kim MP, Ko H. A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine. Adv Sci (Weinh) 2021;8:2005010. [PMID: 34258158 DOI: 10.1002/advs.202005010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
29 Li Q, Dai K, Zhang W, Wang X, You Z, Zhang H. Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence. Digital Signal Processing 2021;113:103038. [DOI: 10.1016/j.dsp.2021.103038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
30 Venugopal K, Panchatcharam P, Chandrasekhar A, Shanmugasundaram V. Comprehensive Review on Triboelectric Nanogenerator Based Wrist Pulse Measurement: Sensor Fabrication and Diagnosis of Arterial Pressure. ACS Sens 2021;6:1681-94. [PMID: 33969980 DOI: 10.1021/acssensors.0c02324] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
31 Liang S, Wang Y, Liu Q, Yuan T, Yao C. The Recent Progress in Cellulose Paper‐Based Triboelectric Nanogenerators. Adv Sustainable Syst 2021;5:2100034. [DOI: 10.1002/adsu.202100034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 Tripathi S, Singh BN, Singh D, Kumar G, Srivastava P. Optimization and evaluation of ciprofloxacin-loaded collagen/chitosan scaffolds for skin tissue engineering. 3 Biotech 2021;11:160. [PMID: 33758738 DOI: 10.1007/s13205-020-02567-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Tripathi S, Singh BN, Divakar S, Kumar G, Mallick SP, Srivastava P. Design and evaluation of ciprofloxacin loaded collagen chitosan oxygenating scaffold for skin tissue engineering. Biomed Mater 2021;16:025021. [PMID: 33291087 DOI: 10.1088/1748-605X/abd1b8] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
34 Chao S, Ouyang H, Jiang D, Fan Y, Li Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2021;3. [DOI: 10.1002/eom2.12072] [Cited by in Crossref: 8] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
35 Sharova AS, Melloni F, Lanzani G, Bettinger CJ, Caironi M. Edible Electronics: The Vision and the Challenge. Adv Mater Technol 2021;6:2000757. [DOI: 10.1002/admt.202000757] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
36 Wu Y, Luo Y, Qu J, Daoud WA, Qi T. Nanogap and Environmentally Stable Triboelectric Nanogenerators Based on Surface Self-Modified Sustainable Films. ACS Appl Mater Interfaces 2020;12:55444-52. [PMID: 33253520 DOI: 10.1021/acsami.0c16671] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Tat T, Libanori A, Au C, Yau A, Chen J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens Bioelectron 2021;171:112714. [PMID: 33068881 DOI: 10.1016/j.bios.2020.112714] [Cited by in Crossref: 46] [Cited by in F6Publishing: 90] [Article Influence: 23.0] [Reference Citation Analysis]
38 Gu Y, Hou T, Chen P, Cao J, Pan C, Hu W, Yang B, Pu X, Wang ZL. Self-powered electronic paper with energy supplies and information inputs solely from mechanical motions. Photon Res 2020;8:1496. [DOI: 10.1364/prj.394044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
39 Khandelwal G, Maria Joseph Raj NP, Kim S. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 2020;33:100882. [DOI: 10.1016/j.nantod.2020.100882] [Cited by in Crossref: 24] [Cited by in F6Publishing: 42] [Article Influence: 12.0] [Reference Citation Analysis]
40 Zhao G, Gong S, Wang H, Ren J, Wang N, Yang Y, Gao G, Chen S, Li L. Ultrathin Biocompatible Electrospun Fiber Films for Self-Powered Human Motion Sensor. Int J of Precis Eng and Manuf -Green Tech 2021;8:855-68. [DOI: 10.1007/s40684-020-00246-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
41 Chen G, Xu L, Zhang P, Chen B, Wang G, Ji J, Pu X, Wang ZL. Seawater Degradable Triboelectric Nanogenerators for Blue Energy. Adv Mater Technol . [DOI: 10.1002/admt.202000455] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
42 Jo S, Kim I, Jayababu N, Roh H, Kim Y, Kim D. Antibacterial and Soluble Paper-Based Skin-Attachable Human Motion Sensor Using Triboelectricity. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.0c02542] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
43 Sriphan S, Charoonsuk T, Maluangnont T, Pakawanit P, Rojviriya C, Vittayakorn N. Multifunctional Nanomaterials Modification of Cellulose Paper for Efficient Triboelectric Nanogenerators. Adv Mater Technol 2020;5:2000001. [DOI: 10.1002/admt.202000001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 14.5] [Reference Citation Analysis]
44 Yan K, Li X, Wang X, Yu M, Fan Z, Ramakrishna S, Hu H, Long Y. A non-toxic triboelectric nanogenerator for baby care applications. J Mater Chem A 2020;8:22745-53. [DOI: 10.1039/d0ta08909e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
45 Liu H, Zhao G, Wu M, Liu Z, Xiang D, Wu C, Cheng Y, Wang H, Wang ZL, Li L. Ionogel infiltrated paper as flexible electrode for wearable all-paper based sensors in active and passive modes. Nano Energy 2019;66:104161. [DOI: 10.1016/j.nanoen.2019.104161] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]