BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Zhang L, Ban Q, Li J, Li C, Guan Y. Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery. Nanomedicine: Nanotechnology, Biology and Medicine 2018;14:353-64. [DOI: 10.1016/j.nano.2017.11.012] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Rakotondrabe TF, Fan MX, Muema FW, Guo MQ. Modulating Inflammation-Mediated Diseases via Natural Phenolic Compounds Loaded in Nanocarrier Systems. Pharmaceutics 2023;15. [PMID: 36840021 DOI: 10.3390/pharmaceutics15020699] [Reference Citation Analysis]
2 Cuylear DL, Elghazali NA, Kapila SD, Desai TA. Calcium Phosphate Delivery Systems for Regeneration and Biomineralization of Mineralized Tissues of the Craniofacial Complex. Mol Pharm 2023;20:810-28. [PMID: 36652561 DOI: 10.1021/acs.molpharmaceut.2c00652] [Reference Citation Analysis]
3 Shah P, Basant. Strategies for Formulation and Systemic Delivery of Therapeutic Proteins. Protein-based Therapeutics 2023. [DOI: 10.1007/978-981-19-8249-1_6] [Reference Citation Analysis]
4 Luo Y, Wang F, Yuan X, Wang K, Sun Q, Wang H, Pu C, Tang W. Walnut peptide loaded proliposomes with hydroxyapatite as a carrier: Fabrication, environmental stability, and in vitro digestion attribute. Food Research International 2022;162:112057. [DOI: 10.1016/j.foodres.2022.112057] [Reference Citation Analysis]
5 Shukla S, Singh B, Singh A, Singh C. Emerging and advanced drug delivery systems for improved biopharmaceutical attributes of gallic acid: A review. Phytomedicine Plus 2022;2:100369. [DOI: 10.1016/j.phyplu.2022.100369] [Reference Citation Analysis]
6 Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022;19:49. [PMID: 35854319 DOI: 10.1186/s12989-022-00491-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 González-martínez DA, González Ruíz G, Luzardo Lorenzo MDC, Bordallo-león F, Hechavarría Luna Y, Cazañas Quintana Y, González-martínez E, León K, González Palomo A, García Artalejo JA, Moran-mirabal J. Hydroxyapatite Nanoparticles as a Potential Long-Term Treatment of Cancer of Epithelial Origin. ACS Appl Nano Mater 2022;5:6159-70. [DOI: 10.1021/acsanm.2c00021] [Reference Citation Analysis]
8 Vitulo M, Gnodi E, Meneveri R, Barisani D. Interactions between Nanoparticles and Intestine. IJMS 2022;23:4339. [DOI: 10.3390/ijms23084339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Wang M, Wang C, Ren S, Pan J, Wang Y, Shen Y, Zeng Z, Cui H, Zhao X. Versatile Oral Insulin Delivery Nanosystems: From Materials to Nanostructures. IJMS 2022;23:3362. [DOI: 10.3390/ijms23063362] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhang P, Li Y, Tang W, Zhao J, Jing L, Mchugh KJ. Theranostic nanoparticles with disease-specific administration strategies. Nano Today 2022;42:101335. [DOI: 10.1016/j.nantod.2021.101335] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 16.0] [Reference Citation Analysis]
11 Xu M, Huang J, Jiang S, He J, Wang Z, Qin H, Guan YQ. Glucose sensitive konjac glucomannan/concanavalin A nanoparticles as oral insulin delivery system. Int J Biol Macromol 2022:S0141-8130(22)00057-5. [PMID: 35038475 DOI: 10.1016/j.ijbiomac.2022.01.048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Yücel Ç, Şeker Karatoprak G. Nanotechnology and phytonutrients. The Role of Phytonutrients in Metabolic Disorders 2022. [DOI: 10.1016/b978-0-12-824356-5.00008-4] [Reference Citation Analysis]
13 Ghose D, Kumar D. Emerging Nanostructures in Dental Applications. Emerging Materials 2022. [DOI: 10.1007/978-981-19-1312-9_8] [Reference Citation Analysis]
14 Lara-Ochoa S, Ortega-Lara W, Guerrero-Beltrán CE. Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021;13:1642. [PMID: 34683935 DOI: 10.3390/pharmaceutics13101642] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
15 Chen Y, Song H, Huang K, Guan X. Novel porous starch/alginate hydrogels for controlled insulin release with dual response to pH and amylase. Food Funct 2021;12:9165-77. [PMID: 34606530 DOI: 10.1039/d1fo01411k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Khan B, Nawaz M, Price GJ, Hussain R, Baig A, Haq S, Rehman W, Waseem M. In vitro sustained release of gallic acid from the size-controlled PEGylated magnetite nanoparticles. Chem Pap 2021;75:5339-5352. [DOI: 10.1007/s11696-021-01724-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Pinelo R, Roque L, Reis CP. Oral insulin delivery: utopia, currently possible or a near reality? Ther Deliv 2021;12:477-88. [PMID: 34008413 DOI: 10.4155/tde-2021-0021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Rocha S, Lucas M, Ribeiro D, Corvo ML, Fernandes E, Freitas M. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol Res 2021;169:105604. [PMID: 33845125 DOI: 10.1016/j.phrs.2021.105604] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
19 Poudwal S, Misra A, Shende P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J Drug Target 2021;29:834-47. [PMID: 33620269 DOI: 10.1080/1061186X.2021.1894434] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Zhang T, Tang JZ, Fei X, Li Y, Song Y, Qian Z, Peng Q. Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery? Acta Pharm Sin B 2021;11:651-67. [PMID: 33777673 DOI: 10.1016/j.apsb.2020.08.016] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
21 Rasouli M, Darghiasi SF, Naghib SM, Rahmanian M. Multifunctional Hydroxyapatite-based Nanoparticles for Biomedicine: Recent Progress in Drug Delivery and Local Controlled Release. CMAM 2021;1:3-16. [DOI: 10.2174/2666184501999200420072949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Kanugo A, Misra A. New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics. Therapeutic Delivery 2020;11:713-32. [DOI: 10.4155/tde-2020-0068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
23 Zhang X, Xing H, Qi F, Liu H, Gao L, Wang X. Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects. Nanotheranostics 2020;4:242-55. [PMID: 32923314 DOI: 10.7150/ntno.46408] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
24 Yang Y, Liu Y, Chen S, Cheong KL, Teng B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr Polym 2020;246:116617. [PMID: 32747257 DOI: 10.1016/j.carbpol.2020.116617] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 14.7] [Reference Citation Analysis]
25 Zhang Y, Li J, Wang Z, Xu M, Zeng Z, Huang J, Guan Y. Natural plant-derived polygalacturonic acid-oleanolic acid assemblies as oral-delivered nanomedicine for insulin resistance treatment. Chemical Engineering Journal 2020;390:124630. [DOI: 10.1016/j.cej.2020.124630] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
26 Yin M, Song Y, Guo S, Zhang X, Sun K, Li Y, Shi Y. Intelligent Escape System for the Oral Delivery of Liraglutide: A Perfect Match for Gastrointestinal Barriers. Mol Pharm 2020;17:1899-909. [PMID: 32267705 DOI: 10.1021/acs.molpharmaceut.9b01307] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
27 Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020;21:E2217. [PMID: 32210082 DOI: 10.3390/ijms21062217] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 12.7] [Reference Citation Analysis]
28 Chatterjee S, Bhushan Sharma C, Lavie CJ, Adhikari A, Deedwania P, O'keefe JH. Oral insulin: an update. Minerva Endocrinol 2020;45. [DOI: 10.23736/s0391-1977.19.03055-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
29 Zaric BL, Obradovic M, Sudar-Milovanovic E, Nedeljkovic J, Lazic V, Isenovic ER. Drug Delivery Systems for Diabetes Treatment. Curr Pharm Des 2019;25:166-73. [PMID: 30848184 DOI: 10.2174/1381612825666190306153838] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
30 Paul W, Sharma CP. Inorganic nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials 2020. [DOI: 10.1016/b978-0-08-102680-9.00013-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
31 Han Y, Gao Z, Chen L, Kang L, Huang W, Jin M, Wang Q, Bae YH. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B 2019;9:902-22. [PMID: 31649842 DOI: 10.1016/j.apsb.2019.01.004] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 14.3] [Reference Citation Analysis]
32 Bi Y, Lin Z, Deng S. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Materials Science and Engineering: C 2019;100:576-83. [DOI: 10.1016/j.msec.2019.03.040] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 18.8] [Reference Citation Analysis]
33 Fan S, Huang Z, Zhang Y, Hu H, Liang X, Gong S, Zhou J, Tu R. Magnetic chitosan-hydroxyapatite composite microspheres: Preparation, characterization, and application for the adsorption of phenolic substances. Bioresource Technology 2019;274:48-55. [DOI: 10.1016/j.biortech.2018.11.078] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 12.3] [Reference Citation Analysis]
34 Pandey S, Kumar V, Leekha A, Rai N, Ahmad FJ, Verma AK, Talegaonkar S. Co-Delivery of Teriflunomide and Methotrexate from Hydroxyapatite Nanoparticles for the Treatment of Rheumatoid Arthritis: In Vitro Characterization, Pharmacodynamic and Biochemical Investigations. Pharm Res 2018;35. [DOI: 10.1007/s11095-018-2478-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
35 Wang Y, He W, Hao H, Wu J, Qin N. Eggshell derived Se-doped HA nanorods for enhanced antitumor effect and curcumin delivery. J Sol-Gel Sci Technol 2018;87:600-7. [DOI: 10.1007/s10971-018-4765-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]