BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim K, Baek SC, Lee YY, Bastiaanssen C, Kim J, Kim H, Kim VN. A quantitative map of human primary microRNA processing sites. Mol Cell 2021:S1097-2765(21)00545-1. [PMID: 34320405 DOI: 10.1016/j.molcel.2021.07.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Komatsu S, Kitai H, Suzuki HI. Network Regulation of microRNA Biogenesis and Target Interaction. Cells 2023;12. [PMID: 36672241 DOI: 10.3390/cells12020306] [Reference Citation Analysis]
2 Nguyen TL, Nguyen TD, Ngo MK, Nguyen TA. Dissection of the Caenorhabditis elegans Microprocessor. Nucleic Acids Res 2023:gkac1170. [PMID: 36598924 DOI: 10.1093/nar/gkac1170] [Reference Citation Analysis]
3 Deng L, Guo P, Han D, Tan W. Sensing miRNAs for disease diagnostics. Analysis & Sensing 2022. [DOI: 10.1002/anse.202200083] [Reference Citation Analysis]
4 Johnson KC, Johnson ST, Liu J, Chu Y, Corey DR. Prioritizing Annotated miRNAs: Only a Small Percentage are Candidates for Biological Regulation.. [DOI: 10.1101/2022.10.18.512653] [Reference Citation Analysis]
5 Aparicio-Puerta E, Hirsch P, Schmartz GP, Fehlmann T, Keller V, Engel A, Kern F, Hackenberg M, Keller A. isomiRdb: microRNA expression at isoform resolution. Nucleic Acids Res 2023;51:D179-85. [PMID: 36243964 DOI: 10.1093/nar/gkac884] [Reference Citation Analysis]
6 Ruiz-Arroyo VM, Nam Y. Dynamic Protein-RNA recognition in primary MicroRNA processing. Curr Opin Struct Biol 2022;76:102442. [PMID: 36067707 DOI: 10.1016/j.sbi.2022.102442] [Reference Citation Analysis]
7 Skalsky RL. MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications. Current Opinion in Virology 2022;56:101272. [DOI: 10.1016/j.coviro.2022.101272] [Reference Citation Analysis]
8 Lu G, Zhu Y, Li H, Yin Y, Shen J, Shen M. Effects of acupuncture treatment on microRNAs expression in ovarian tissues from Tripterygium glycoside-induced diminished ovarian reserve rats. Front Genet 2022;13:968711. [DOI: 10.3389/fgene.2022.968711] [Reference Citation Analysis]
9 Kang M, Kharbash R, Byun JM, Jeon J, Ali AA, Ku D, Yoon J, Ku Y, Sohn J, Lee SV, Shin D, Koh Y, Yoon S, Hong J, Kim Y. Double-stranded RNA induction asa potential dynamic biomarkerfor DNA-demethylating agents. Molecular Therapy - Nucleic Acids 2022;29:370-383. [DOI: 10.1016/j.omtn.2022.07.014] [Reference Citation Analysis]
10 Omoto T, Yimiti D, Sanada Y, Toriyama M, Ding C, Hayashi Y, Ikuta Y, Nakasa T, Ishikawa M, Sano M, Lee M, Akimoto T, Shukunami C, Miyaki S, Adachi N. Tendon-Specific Dicer Deficient Mice Exhibit Hypoplastic Tendon Through the Downregulation of Tendon-Related Genes and MicroRNAs. Front Cell Dev Biol 2022;10:898428. [DOI: 10.3389/fcell.2022.898428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Laggerbauer B, Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease. J Clin Invest 2022;132:e159179. [PMID: 35642640 DOI: 10.1172/JCI159179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hecker M, Fitzner B, Putscher E, Schwartz M, Winkelmann A, Meister S, Dudesek A, Koczan D, Lorenz P, Boxberger N, Zettl UK. Implication of genetic variants in primary microRNA processing sites in the risk of multiple sclerosis. eBioMedicine 2022;80:104052. [DOI: 10.1016/j.ebiom.2022.104052] [Reference Citation Analysis]
13 Kim K, Kim VN. High-throughput in vitro processing of human primary microRNA by the recombinant microprocessor. STAR Protocols 2022;3:101042. [DOI: 10.1016/j.xpro.2021.101042] [Reference Citation Analysis]
14 Bofill-de Ros X, Hong Z, Birkenfeld B, Alamo-ortiz S, Yang A, Dai L, Gu S. Flexible pri-miRNA structures enable tunable production of 5’ isomiRs. RNA Biology 2022;19:279-89. [DOI: 10.1080/15476286.2022.2025680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Feng Y, Liu Q, Zhao X, Chen M, Sun X, Li H, Chen X. Framework Nucleic Acid-Based Spatial-Confinement Amplifier for miRNA Imaging in Living Cells. Anal Chem 2022. [PMID: 35107254 DOI: 10.1021/acs.analchem.1c04866] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Kilikevicius A, Meister G, Corey DR. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res 2021:gkab1256. [PMID: 34967419 DOI: 10.1093/nar/gkab1256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
17 Li G, Gong J, Cao S, Wu Z, Cheng D, Zhu J, Huang X, Tang J, Yuan Y, Cai W, Zhang H. The Non-Coding RNAs Inducing Drug Resistance in Ovarian Cancer: A New Perspective for Understanding Drug Resistance. Front Oncol 2021;11:742149. [PMID: 34660304 DOI: 10.3389/fonc.2021.742149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Bofill-de Ros X, Hong Z, Birkenfeld B, Alamo-ortiz S, Yang A, Dai L, Gu S. Flexible pri-miRNA structures enable tunable production of 5’ isomiRs.. [DOI: 10.1101/2021.08.18.456839] [Reference Citation Analysis]