BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kwon SC, Baek SC, Choi Y, Yang J, Lee Y, Woo J, Kim VN. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing. Molecular Cell 2019;73:505-518.e5. [DOI: 10.1016/j.molcel.2018.11.005] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Komatsu S, Kitai H, Suzuki HI. Network Regulation of microRNA Biogenesis and Target Interaction. Cells 2023;12. [PMID: 36672241 DOI: 10.3390/cells12020306] [Reference Citation Analysis]
2 Nguyen TL, Nguyen TD, Ngo MK, Nguyen TA. Dissection of the Caenorhabditis elegans Microprocessor. Nucleic Acids Res 2023:gkac1170. [PMID: 36598924 DOI: 10.1093/nar/gkac1170] [Reference Citation Analysis]
3 Velle A, Pesenti C, Grassi T, Beltrame L, Martini P, Jaconi M, Agostinis F, Calura E, Katsaros D, Borella F, Fruscio R, D'Incalci M, Marchini S, Romualdi C. A comprehensive investigation of histotype-specific microRNA and their variants in Stage I epithelial ovarian cancers. Int J Cancer 2022. [PMID: 36541726 DOI: 10.1002/ijc.34408] [Reference Citation Analysis]
4 Chen B, An T, Wang Y, Li X, Sun X, Sheng C, Xie Z, Quan X. High expression of YTHDF1 predicts worse survival of patients with hepatocellular carcinoma within the Milan criteria.. [DOI: 10.21203/rs.3.rs-1918424/v2] [Reference Citation Analysis]
5 Tielke A, Martins H, Pelzl MA, Maaser-hecker A, David FS, Reinbold CS, Streit F, Sirignano L, Schwarz M, Vedder H, Kammerer-ciernioch J, Albus M, Borrmann-hassenbach M, Hautzinger M, Hünten K, Degenhardt F, Fischer SB, Beins EC, Herms S, Hoffmann P, Schulze TG, Witt SH, Rietschel M, Cichon S, Nöthen MM, Schratt G, Forstner AJ. Genetic and functional analyses implicate microRNA 499A in bipolar disorder development. Transl Psychiatry 2022;12. [DOI: 10.1038/s41398-022-02176-6] [Reference Citation Analysis]
6 Ruiz-Arroyo VM, Nam Y. Dynamic Protein-RNA recognition in primary MicroRNA processing. Curr Opin Struct Biol 2022;76:102442. [PMID: 36067707 DOI: 10.1016/j.sbi.2022.102442] [Reference Citation Analysis]
7 Kim H, Jang B, Lee D, Kwon SC, Lee H. Artificial primary-miRNAs as a platform for simultaneous delivery of siRNA and antisense oligonucleotide for multimodal gene regulation. J Control Release 2022;349:983-91. [PMID: 35931211 DOI: 10.1016/j.jconrel.2022.07.043] [Reference Citation Analysis]
8 Chen B, An T, Wang Y, Li X, Sun X, Sheng C, Xie Z, Quan X. High expression of YTHDF1 predicts worse survival of patients with hepatocellular carcinoma within the Milan criteria.. [DOI: 10.21203/rs.3.rs-1918424/v1] [Reference Citation Analysis]
9 Shortridge MD, Olsen GL, Yang W, Walker MJ, Varani G. A slow dynamic RNA switch regulates processing of microRNA-21. J Mol Biol 2022;:167694. [PMID: 35752213 DOI: 10.1016/j.jmb.2022.167694] [Reference Citation Analysis]
10 Park S, Yang HD, Seo JW, Nam JW, Nam SW. hnRNPC induces isoform shifts in miR-21-5p leading to cancer development. Exp Mol Med 2022. [PMID: 35729324 DOI: 10.1038/s12276-022-00792-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Pandey M, Luhur A, Sokol NS, Chawla G. Molecular Dissection of a Conserved Cluster of miRNAs Identifies Critical Structural Determinants That Mediate Differential Processing. Front Cell Dev Biol 2022;10:909212. [DOI: 10.3389/fcell.2022.909212] [Reference Citation Analysis]
12 Dawson O, Piccinini AM. miR-155-3p: processing by-product or rising star in immunity and cancer? Open Biol 2022;12:220070. [PMID: 35611569 DOI: 10.1098/rsob.220070] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Bofill-de Ros X, Hong Z, Birkenfeld B, Alamo-ortiz S, Yang A, Dai L, Gu S. Flexible pri-miRNA structures enable tunable production of 5’ isomiRs. RNA Biology 2022;19:279-89. [DOI: 10.1080/15476286.2022.2025680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhang X, Yang F, Liu F, Tian Q, Hu M, Li P, Zeng Y. Conservation of Differential Animal MicroRNA Processing by Drosha and Dicer. Front Mol Biosci 2021;8:730006. [PMID: 35047552 DOI: 10.3389/fmolb.2021.730006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Shortridge MD, Yang W, Walker MJ, Varani G. A slow dynamic RNA switch regulates processing of microRNA-21.. [DOI: 10.1101/2021.12.07.471640] [Reference Citation Analysis]
16 Nguyen TL, Nguyen TD, Nguyen TA. The conserved single-cleavage mechanism of animal DROSHA enzymes. Commun Biol 2021;4:1332. [PMID: 34824450 DOI: 10.1038/s42003-021-02860-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Kang W, Fromm B, Houben AJ, Høye E, Bezdan D, Arnan C, Thrane K, Asp M, Johnson R, Biryukova I, Friedländer MR. MapToCleave: High-throughput profiling of microRNA biogenesis in living cells. Cell Rep 2021;37:110015. [PMID: 34788611 DOI: 10.1016/j.celrep.2021.110015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
18 Yoshida T, Asano Y, Ui-Tei K. Modulation of MicroRNA Processing by Dicer via Its Associated dsRNA Binding Proteins. Noncoding RNA 2021;7:57. [PMID: 34564319 DOI: 10.3390/ncrna7030057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
19 Bofill-de Ros X, Hong Z, Birkenfeld B, Alamo-ortiz S, Yang A, Dai L, Gu S. Flexible pri-miRNA structures enable tunable production of 5’ isomiRs.. [DOI: 10.1101/2021.08.18.456839] [Reference Citation Analysis]
20 Feng C, Mu JX, Ren CL. Regulation of oligonucleotide adsorption by a thermo and pH dual-responsive copolymer layer. Phys Chem Chem Phys 2021;23:14296-307. [PMID: 34160496 DOI: 10.1039/d1cp01644j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Kang W, Fromm B, Houben AJS, Høye E, Bezdan D, Arnan C, Thrane K, Asp M, Johnson RB, Biryukova I, Friedländer MR. MapToCleave: high-throughput profiling of microRNA biogenesis in living cells.. [DOI: 10.1101/2021.08.03.454879] [Reference Citation Analysis]
22 Kim K, Baek SC, Lee YY, Bastiaanssen C, Kim J, Kim H, Kim VN. A quantitative map of human primary microRNA processing sites. Mol Cell 2021:S1097-2765(21)00545-1. [PMID: 34320405 DOI: 10.1016/j.molcel.2021.07.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
23 Park S, Kang I, Shin C. MicroRNA clustering on the biogenesis of suboptimal microRNAs. Appl Biol Chem 2021;64. [DOI: 10.1186/s13765-021-00624-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
24 Baisden JT, Childs-Disney JL, Ryan LS, Disney MD. Affecting RNA biology genome-wide by binding small molecules and chemically induced proximity. Curr Opin Chem Biol 2021;62:119-29. [PMID: 34118759 DOI: 10.1016/j.cbpa.2021.03.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Rodríguez-Galán A, Dosil SG, Gómez MJ, Fernández-Delgado I, Fernández-Messina L, Sánchez-Cabo F, Sánchez-Madrid F. MiRNA post-transcriptional modification dynamics in T cell activation. iScience 2021;24:102530. [PMID: 34142042 DOI: 10.1016/j.isci.2021.102530] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Li S, Le TN, Nguyen TD, Trinh TA, Nguyen TA. Bulges control pri-miRNA processing in a position and strand-dependent manner. RNA Biol 2021;18:1716-26. [PMID: 33382955 DOI: 10.1080/15476286.2020.1868139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
27 Kotowska-Zimmer A, Pewinska M, Olejniczak M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. Wiley Interdiscip Rev RNA 2021;12:e1640. [PMID: 33386705 DOI: 10.1002/wrna.1640] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
28 Pabit SA, Chen YL, Usher ET, Cook EC, Pollack L, Showalter SA. Elucidating the Role of Microprocessor Protein DGCR8 in Bending RNA Structures. Biophys J 2020;119:2524-36. [PMID: 33189689 DOI: 10.1016/j.bpj.2020.10.038] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Rice GM, Shivashankar V, Ma EJ, Baryza JL, Nutiu R. Functional Atlas of Primary miRNA Maturation by the Microprocessor. Molecular Cell 2020;80:892-902.e4. [DOI: 10.1016/j.molcel.2020.10.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
30 Kwon SC, Jang H, Shen S, Baek SC, Kim K, Yang J, Kim J, Kim JS, Wang S, Shi Y, Li F, Kim VN. ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic Acids Res 2020;48:11097-112. [PMID: 33035348 DOI: 10.1093/nar/gkaa827] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
31 Le CT, Nguyen TL, Nguyen TD, Nguyen TA. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a. RNA 2020;26:1777-86. [PMID: 32994184 DOI: 10.1261/rna.077487.120] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
32 Sun Q, Song YJ, Prasanth KV. One locus with two roles: microRNA-independent functions of microRNA-host-gene locus-encoded long noncoding RNAs. Wiley Interdiscip Rev RNA 2021;12:e1625. [PMID: 32945142 DOI: 10.1002/wrna.1625] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
33 Rodríguez-galán A, Dosil SG, Gómez MJ, Fernández-delgado I, Sánchez-cabo F, Sánchez-madrid F. Impaired miRNA degradation by post-transcriptional addition of 3’ cytosine and adenine in T cell activation.. [DOI: 10.1101/2020.08.19.257816] [Reference Citation Analysis]
34 Fang W, Bartel DP. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Mol Cell 2020;78:289-302.e6. [PMID: 32302541 DOI: 10.1016/j.molcel.2020.01.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
35 Shang R, Baek SC, Kim K, Kim B, Kim VN, Lai EC. Genomic Clustering Facilitates Nuclear Processing of Suboptimal Pri-miRNA Loci. Mol Cell 2020;78:303-316.e4. [PMID: 32302542 DOI: 10.1016/j.molcel.2020.02.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
36 Dang TL, Le CT, Le MN, Nguyen TD, Nguyen TL, Bao S, Li S, Nguyen TA. Select amino acids in DGCR8 are essential for the UGU-pri-miRNA interaction and processing. Commun Biol 2020;3:344. [PMID: 32620823 DOI: 10.1038/s42003-020-1071-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
37 Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020;8:409. [PMID: 32582699 DOI: 10.3389/fcell.2020.00409] [Cited by in Crossref: 92] [Cited by in F6Publishing: 104] [Article Influence: 30.7] [Reference Citation Analysis]
38 Sons RL, Kaufmann KW, Hammond SM. A functional screen for optimization of short hairpin RNA biogenesis and RISC loading.. [DOI: 10.1101/2020.05.22.110924] [Reference Citation Analysis]
39 Kim H, Kim J, Yu S, Lee YY, Park J, Choi RJ, Yoon SJ, Kang SG, Kim VN. A Mechanism for microRNA Arm Switching Regulated by Uridylation. Mol Cell 2020;78:1224-1236.e5. [PMID: 32442398 DOI: 10.1016/j.molcel.2020.04.030] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 11.0] [Reference Citation Analysis]
40 Kwon SC, Jang H, Yang J, Kim J, Baek SC, Kim J, Kim VN. ERH as a component of the Microprocessor facilitates the maturation of suboptimal microRNAs.. [DOI: 10.1101/2020.05.13.093278] [Reference Citation Analysis]
41 Jin W, Wang J, Liu C, Wang H, Xu R. Structural Basis for pri-miRNA Recognition by Drosha. Molecular Cell 2020;78:423-433.e5. [DOI: 10.1016/j.molcel.2020.02.024] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 10.3] [Reference Citation Analysis]
42 Yang HD, Nam SW. Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Exp Mol Med 2020;52:582-93. [PMID: 32346127 DOI: 10.1038/s12276-020-0429-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
43 Li S, Nguyen TD, Nguyen TL, Nguyen TA. Mismatched and wobble base pairs govern primary microRNA processing by human Microprocessor. Nat Commun 2020;11:1926. [PMID: 32317642 DOI: 10.1038/s41467-020-15674-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
44 Partin AC, Zhang K, Jeong BC, Herrell E, Li S, Chiu W, Nam Y. Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA. Mol Cell 2020;78:411-422.e4. [PMID: 32220646 DOI: 10.1016/j.molcel.2020.02.016] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
45 Spadotto V, Giambruno R, Massignani E, Mihailovich M, Maniaci M, Patuzzo F, Ghini F, Nicassio F, Bonaldi T. PRMT1-mediated methylation of the microprocessor-associated proteins regulates microRNA biogenesis. Nucleic Acids Res 2020;48:96-115. [PMID: 31777917 DOI: 10.1093/nar/gkz1051] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
46 Colamatteo A, Micillo T, Bruzzaniti S, Fusco C, Garavelli S, De Rosa V, Galgani M, Spagnuolo MI, Di Rella F, Puca AA, de Candia P, Matarese G. Metabolism and Autoimmune Responses: The microRNA Connection. Front Immunol 2019;10:1969. [PMID: 31555261 DOI: 10.3389/fimmu.2019.01969] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
47 Bofill-De Ros X, Yang A, Gu S. IsomiRs: Expanding the miRNA repression toolbox beyond the seed. Biochim Biophys Acta Gene Regul Mech 2020;1863:194373. [PMID: 30953728 DOI: 10.1016/j.bbagrm.2019.03.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
48 Watson SF, Knol LI, Witteveldt J, Macias S. Crosstalk Between Mammalian Antiviral Pathways. Noncoding RNA 2019;5:E29. [PMID: 30909383 DOI: 10.3390/ncrna5010029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]