BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Ho GW. Design of untethered soft material micromachine for life-like locomotion. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.01.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen Y, Zhang Y, Li H, Shen J, Zhang F, He J, Lin J, Wang B, Niu S, Han Z, Guo Z. Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges. Nano Today 2023;49:101764. [DOI: 10.1016/j.nantod.2023.101764] [Reference Citation Analysis]
2 Miao J, Zhang T, Li G, Guo D, Sun S, Tan R, Shi J, Shen Y. Flagellar/Ciliary Intrinsic Driven Mechanism Inspired All-in-One Tubular Robotic Actuator. Engineering 2023. [DOI: 10.1016/j.eng.2022.09.014] [Reference Citation Analysis]
3 Deng C, Liu Y, Fan X, Jiao B, Zhang Z, Zhang M, Chen F, Gao H, Deng L, Xiong W. Femtosecond Laser 4D Printing of Light‐Driven Intelligent Micromachines. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202211473] [Reference Citation Analysis]
4 Ge D, Dai Y, Li K. Light-powered self-spinning of a button spinner. International Journal of Mechanical Sciences 2023;238:107824. [DOI: 10.1016/j.ijmecsci.2022.107824] [Reference Citation Analysis]
5 Sun J, Bauman L, Yu L, Zhao B. Gecko-and-inchworm-inspired untethered soft robot for climbing on walls and ceilings. Cell Reports Physical Science 2023. [DOI: 10.1016/j.xcrp.2022.101241] [Reference Citation Analysis]
6 Xu L, Xue F, Zheng H, Ji Q, Qiu C, Chen Z, Zhao X, Li P, Hu Y, Peng Q, He X. An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy 2022;103:107848. [DOI: 10.1016/j.nanoen.2022.107848] [Reference Citation Analysis]
7 He J, Wu Z, Li B, Xing Y, Huang P, Liu L. Multi-stimulus synergistic control soft actuators based on laterally heterogeneous MXene structure. Carbon 2022. [DOI: 10.1016/j.carbon.2022.10.072] [Reference Citation Analysis]
8 Ge D, Li K. Pulsating self-snapping of a liquid crystal elastomer bilayer spherical shell under steady illumination. International Journal of Mechanical Sciences 2022;233:107646. [DOI: 10.1016/j.ijmecsci.2022.107646] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ouyang Y, Huang G, Cui J, Zhu H, Yan G, Mei Y. Advances and Challenges of Hydrogel Materials for Robotic and Sensing Applications. Chem Mater . [DOI: 10.1021/acs.chemmater.2c01960] [Reference Citation Analysis]
10 Liu Z, Zhang R, Yang K, Yue Y, Wang F, Li K, Wang G, Lian J, Xin G. Highly Thermally Conductive Bimorph Structures for Low-Grade Heat Energy Harvester and Energy-Efficient Actuators. ACS Appl Mater Interfaces 2022. [PMID: 35993541 DOI: 10.1021/acsami.2c08101] [Reference Citation Analysis]
11 Ge D, Jin J, Dai Y, Xu P, Li K. Self-Jumping of a Liquid Crystal Elastomer Balloon under Steady Illumination. Polymers 2022;14:2770. [DOI: 10.3390/polym14142770] [Reference Citation Analysis]
12 Zhou L, Du C, Wang W, Li K. A thermally-responsive fiber engine in a linear temperature field. International Journal of Mechanical Sciences 2022;225:107391. [DOI: 10.1016/j.ijmecsci.2022.107391] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Huang Z, Tsui GC, Deng Y, Tang C, Yang M, Zhang M, Wong W. Bioinspired near-infrared light-induced ultrafast soft actuators with tunable deformation and motion based on conjugated polymers/liquid crystal elastomers. J Mater Chem C. [DOI: 10.1039/d2tc02594a] [Reference Citation Analysis]