BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y. An Improved Moth-Flame Optimization algorithm with hybrid search phase. Knowledge-Based Systems 2020;191:105277. [DOI: 10.1016/j.knosys.2019.105277] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 El Amraoui A. Metaheuristic Moth Flame Optimization Based Energy Efficient Clustering Protocol for 6G Enabled Unmanned Aerial Vehicle Networks. AI‐Enabled 6G Networks and Applications 2023. [DOI: 10.1002/9781119812722.ch1] [Reference Citation Analysis]
2 Wei X, Huang H. A survey on several new popular swarm intelligence optimization algorithms.. [DOI: 10.21203/rs.3.rs-2450545/v1] [Reference Citation Analysis]
3 Nadimi-Shahraki MH, Taghian S, Zamani H, Mirjalili S, Elaziz MA. MMKE: Multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems. PLoS One 2023;18:e0280006. [PMID: 36595557 DOI: 10.1371/journal.pone.0280006] [Reference Citation Analysis]
4 Ma Z, Wu G, Suganthan P, Song A, Luo Q. Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms. Swarm and Evolutionary Computation 2023. [DOI: 10.1016/j.swevo.2023.101248] [Reference Citation Analysis]
5 Sahoo SK, Saha AK, Ezugwu AE, Agushaka JO, Abuhaija B, Alsoud AR, Abualigah L. Moth Flame Optimization: Theory, Modifications, Hybridizations, and Applications. Arch Comput Methods Eng 2023;30:391-426. [PMID: 36059575 DOI: 10.1007/s11831-022-09801-z] [Reference Citation Analysis]
6 Santosh Jhansi K, Chakravarty S, Ravi Kiran Varma P. A Two-Tier Fuzzy Meta-Heuristic Hybrid Optimization for Dynamic Android Malware Detection. SN COMPUT SCI 2022;4:117. [DOI: 10.1007/s42979-022-01523-0] [Reference Citation Analysis]
7 K R K, Venugopalan A, Devan S. Gene selection using Moth Flame algorithm and classification of Gene Expression Dataset. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT) 2022. [DOI: 10.1109/gcat55367.2022.9972212] [Reference Citation Analysis]
8 Zhao X, Fang Y, Ma S, Liu Z. Multi-swarm improved moth–flame optimization algorithm with chaotic grouping and Gaussian mutation for solving engineering optimization problems. Expert Systems with Applications 2022;204:117562. [DOI: 10.1016/j.eswa.2022.117562] [Reference Citation Analysis]
9 Ch LK, Kamboj VK, Bath SK. Hybridizing slime mould algorithm with simulated annealing algorithm: a hybridized statistical approach for numerical and engineering design problems. Complex Intell Syst . [DOI: 10.1007/s40747-022-00852-0] [Reference Citation Analysis]
10 Li X, Chen J, Sun L, Li J. A new imperialist competitive algorithm with spiral rising mechanism for solving path optimization problems. PeerJ Computer Science 2022;8:e1075. [DOI: 10.7717/peerj-cs.1075] [Reference Citation Analysis]
11 Yu X, Zhao Q, Lin Q, Wang T. A grey wolf optimizer-based chaotic gravitational search algorithm for global optimization. J Supercomput. [DOI: 10.1007/s11227-022-04754-3] [Reference Citation Analysis]
12 Chen Z. A Computational Intelligence Hybrid Algorithm Based on Population Evolutionary and Neural Network Learning for the Crude Oil Spot Price Prediction. Int J Comput Intell Syst 2022;15. [DOI: 10.1007/s44196-022-00130-4] [Reference Citation Analysis]
13 Sahoo SK, Saha AK, Nama S, Masdari M. An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artif Intell Rev. [DOI: 10.1007/s10462-022-10218-0] [Reference Citation Analysis]
14 Elaziz MA, Abualigah L, Ewees AA, Al-qaness MA, Mostafa RR, Yousri D, Ibrahim RA. Triangular mutation-based manta-ray foraging optimization and orthogonal learning for global optimization and engineering problems. Appl Intell. [DOI: 10.1007/s10489-022-03899-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Goli A, Golmohammadi A, Verdegay J. Two-echelon electric vehicle routing problem with a developed moth-flame meta-heuristic algorithm. Oper Manag Res. [DOI: 10.1007/s12063-022-00298-0] [Reference Citation Analysis]
16 Price D, Radaideh MI, Kochunas B. Multiobjective optimization of nuclear microreactor reactivity control system operation with swarm and evolutionary algorithms. Nuclear Engineering and Design 2022;393:111776. [DOI: 10.1016/j.nucengdes.2022.111776] [Reference Citation Analysis]
17 Wang F, Liao X, Fang N, Jiang Z. Optimal Scheduling of Regional Combined Heat and Power System Based on Improved MFO Algorithm. Energies 2022;15:3410. [DOI: 10.3390/en15093410] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Zheng R, Hussien AG, Jia H, Abualigah L, Wang S, Wu D. An Improved Wild Horse Optimizer for Solving Optimization Problems. Mathematics 2022;10:1311. [DOI: 10.3390/math10081311] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Yang Z. FMFO: Floating flame moth-flame optimization algorithm for training multi-layer perceptron classifier. Appl Intell. [DOI: 10.1007/s10489-022-03484-6] [Reference Citation Analysis]
20 Che Y, He D. An enhanced seagull optimization algorithm for solving engineering optimization problems. Appl Intell. [DOI: 10.1007/s10489-021-03155-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Zhao X, Fang Y, Liu L, Xu M, Li Q. A covariance-based Moth-flame optimization algorithm with Cauchy mutation for solving numerical optimization problems. Applied Soft Computing 2022. [DOI: 10.1016/j.asoc.2022.108538] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Sahoo SK, Saha AK, Sharma S, Mirjalili S, Chakraborty S. An enhanced moth flame optimization with mutualism scheme for function optimization. Soft Comput. [DOI: 10.1007/s00500-021-06560-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Dhivya S, Arul R. Hybrid Flower Pollination Algorithm for Optimization Problems. Algorithms for Intelligent Systems 2022. [DOI: 10.1007/978-981-16-6893-7_65] [Reference Citation Analysis]
24 Ye L, Huang H, Wei X. Optimization Improvement and Clustering Application Based on Moth-Flame Algorithm. Intelligent Computing Methodologies 2022. [DOI: 10.1007/978-3-031-13832-4_63] [Reference Citation Analysis]
25 Sarkar D, Biswas A. Comparative Performance Analysis of Recent Evolutionary Algorithms. Evolution in Computational Intelligence 2022. [DOI: 10.1007/978-981-16-6616-2_14] [Reference Citation Analysis]
26 Hou G, Gong L, Hu B, Su H, Huang T, Huang C, Fan W, Zhao Y. Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit. Energy 2022;239:121843. [DOI: 10.1016/j.energy.2021.121843] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
27 Ayyarao TSLV, Ramakrishna NSS, Elavarasan RM, Polumahanthi N, Rambabu M, Saini G, Khan B, Alatas B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022;10:25073-105. [DOI: 10.1109/access.2022.3153493] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 17.0] [Reference Citation Analysis]
28 Nadimi-shahraki MH, Fatahi A, Zamani H, Mirjalili S, Abualigah L, Abd Elaziz M. Migration-Based Moth-Flame Optimization Algorithm. Processes 2021;9:2276. [DOI: 10.3390/pr9122276] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
29 Zheng R, Jia H, Abualigah L, Liu Q, Wang S. An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems. Math Biosci Eng 2022;19:473-512. [PMID: 34903000 DOI: 10.3934/mbe.2022023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
30 Kumar N, Mahato SK, Bhunia AK. Design of an efficient hybridized CS-PSO algorithm and its applications for solving constrained and bound constrained structural engineering design problems. Results in Control and Optimization 2021;5:100064. [DOI: 10.1016/j.rico.2021.100064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Ahmed OH, Lu J, Xu Q, Ahmed AM, Rahmani AM, Hosseinzadeh M. Using differential evolution and Moth–Flame optimization for scientific workflow scheduling in fog computing. Applied Soft Computing 2021;112:107744. [DOI: 10.1016/j.asoc.2021.107744] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Askari Q, Younas I. Improved political optimizer for complex landscapes and engineering optimization problems. Expert Systems with Applications 2021;182:115178. [DOI: 10.1016/j.eswa.2021.115178] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Nadimi-shahraki MH, Moeini E, Taghian S, Mirjalili S. DMFO-CD: A Discrete Moth-Flame Optimization Algorithm for Community Detection. Algorithms 2021;14:314. [DOI: 10.3390/a14110314] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
34 Nadimi-shahraki MH, Banaie-dezfouli M, Zamani H, Taghian S, Mirjalili S. B-MFO: A Binary Moth-Flame Optimization for Feature Selection from Medical Datasets. Computers 2021;10:136. [DOI: 10.3390/computers10110136] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
35 Minocha S, Singh B. A novel equilibrium optimizer based on levy flight and iterative cosine operator for engineering optimization problems. Expert Systems 2022;39. [DOI: 10.1111/exsy.12843] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Zheng R, Jia H, Abualigah L, Liu Q, Wang S. Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization. Processes 2021;9:1774. [DOI: 10.3390/pr9101774] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
37 Chen C, Wang X, Yu H, Wang M, Chen H. Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms. Mathematics and Computers in Simulation 2021;188:291-318. [DOI: 10.1016/j.matcom.2021.04.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
38 Vishnoi V, Tiwari S, Singla R. Performance Analysis of Enhanced MFO-Based Online-Tuned Split-Range PID Controller. Arab J Sci Eng 2021;46:9673-89. [DOI: 10.1007/s13369-021-05470-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Bingi K, Kulkarni RR, Mantri R. Development of Hybrid Algorithm Using Moth-Flame and Particle Swarm Optimization. 2021 IEEE Madras Section Conference (MASCON) 2021. [DOI: 10.1109/mascon51689.2021.9563556] [Reference Citation Analysis]
40 Zhan T, Xiao F. A fast evidential approach for stock forecasting. Int J Intell Syst 2021;36:7544-62. [DOI: 10.1002/int.22598] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Ramezani M, Bahmanyar D, Razmjooy N. A New Improved Model of Marine Predator Algorithm for Optimization Problems. Arab J Sci Eng 2021;46:8803-26. [DOI: 10.1007/s13369-021-05688-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
42 Eligüzel İM, Özceylan E. Application of an improved discrete crow search algorithm with local search and elitism on a humanitarian relief case. Artif Intell Rev 2021;54:4591-617. [DOI: 10.1007/s10462-021-10006-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Bala Krishna A, Saxena S, Kamboj VK. hSMA-PS: a novel memetic approach for numerical and engineering design challenges. Engineering with Computers. [DOI: 10.1007/s00366-021-01371-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
44 Wei Y, Wang P, Luo Q, Zhou Y. An Energy-segmented Moth-flame Optimization Algorithm for Function Optimization and Performance Measures Analysis. WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS 2020;19:320-46. [DOI: 10.37394/23201.2020.19.35] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Dehghani M, Montazeri Z, Dehghani A, Malik OP, Morales-menendez R, Dhiman G, Nouri N, Ehsanifar A, Guerrero JM, Ramirez-mendoza RA. Binary Spring Search Algorithm for Solving Various Optimization Problems. Applied Sciences 2021;11:1286. [DOI: 10.3390/app11031286] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
46 Ma L, Wang C, Xie N, Shi M, Ye Y, Wang L. Moth-flame optimization algorithm based on diversity and mutation strategy. Appl Intell 2021;51:5836-72. [DOI: 10.1007/s10489-020-02081-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
47 Kumar S, Tejani GG, Pholdee N, Bureerat S, Mehta P. Hybrid Heat Transfer Search and Passing Vehicle Search optimizer for multi-objective structural optimization. Knowledge-Based Systems 2021;212:106556. [DOI: 10.1016/j.knosys.2020.106556] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
48 Zhang H, Li R, Cai Z, Gu Z, Heidari AA, Wang M, Chen H, Chen M. Advanced orthogonal moth flame optimization with Broyden–Fletcher–Goldfarb–Shanno algorithm: Framework and real-world problems. Expert Systems with Applications 2020;159:113617. [DOI: 10.1016/j.eswa.2020.113617] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
49 Li Y, Han M, Guo Q. Modified Whale Optimization Algorithm Based on Tent Chaotic Mapping and Its Application in Structural Optimization. KSCE J Civ Eng 2020;24:3703-13. [DOI: 10.1007/s12205-020-0504-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
50 Xu H, Przystupa K, Fang C, Marciniak A, Kochan O, Beshley M. A Combination Strategy of Feature Selection Based on an Integrated Optimization Algorithm and Weighted K-Nearest Neighbor to Improve the Performance of Network Intrusion Detection. Electronics 2020;9:1206. [DOI: 10.3390/electronics9081206] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
51 Li Y, Zhu X, Liu J. An Improved Moth-Flame Optimization Algorithm for Engineering Problems. Symmetry 2020;12:1234. [DOI: 10.3390/sym12081234] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
52 De Mendonca Mesquita E, Sampaio RC, Ayala HVH, Llanos CH. Recent Meta-Heuristics Improved by Self-Adaptation Applied to Nonlinear Model-Based Predictive Control. IEEE Access 2020;8:118841-52. [DOI: 10.1109/access.2020.3005318] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]