BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lei X, Fang M, Fujita H. Moth–flame optimization-based algorithm with synthetic dynamic PPI networks for discovering protein complexes. Knowledge-Based Systems 2019;172:76-85. [DOI: 10.1016/j.knosys.2019.02.011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Yin L, Cao X, Wang S. Deep learning-accelerated optimization algorithm for controller parameters optimization of doubly-fed induction generators. Applied Soft Computing 2022. [DOI: 10.1016/j.asoc.2022.109800] [Reference Citation Analysis]
2 Zhao F, Wang Q, Zhang H. A Comprehensive Learning Moth-Flame Optimization with Low Discrepancy Sequence. 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD) 2022. [DOI: 10.1109/cscwd54268.2022.9776079] [Reference Citation Analysis]
3 Ye T, Wang W, Wang H, Cui Z, Wang Y, Zhao J, Hu M. Artificial bee colony algorithm with efficient search strategy based on random neighborhood structure. Knowledge-Based Systems 2022;241:108306. [DOI: 10.1016/j.knosys.2022.108306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Gasper W, Cooper K, Cornelius N, Ali H. Parallel Planar Approximation for Large Networks. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2021. [DOI: 10.1109/bibm52615.2021.9669815] [Reference Citation Analysis]
5 Li Z, Zeng J, Chen Y, Ma G, Liu G. Death mechanism-based moth–flame optimization with improved flame generation mechanism for global optimization tasks. Expert Systems with Applications 2021;183:115436. [DOI: 10.1016/j.eswa.2021.115436] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
6 Chen C, Wang X, Yu H, Wang M, Chen H. Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms. Mathematics and Computers in Simulation 2021;188:291-318. [DOI: 10.1016/j.matcom.2021.04.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 15.0] [Reference Citation Analysis]
7 Ge Z, Wang X, Xu Z. A novel order evaluation model with nested probabilistic-numerical linguistic information applied to traditional order grabbing mode. Appl Intell 2021;51:4470-4489. [DOI: 10.1007/s10489-020-02088-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Liu W, Gong M, Tang Z. ETINE: Enhanced Textual Information Network Embedding. Knowledge-Based Systems 2021;220:106917. [DOI: 10.1016/j.knosys.2021.106917] [Reference Citation Analysis]
9 Teoh Yi Zhe I, Keikhosrokiani P. Knowledge workers mental workload prediction using optimised ELANFIS. Appl Intell 2021;51:2406-30. [DOI: 10.1007/s10489-020-01928-5] [Cited by in Crossref: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Shirmohammady N, Izadkhah H, Isazadeh A, Ahmadieh Khanesar M. PPI-GA: A Novel Clustering Algorithm to Identify Protein Complexes within Protein-Protein Interaction Networks Using Genetic Algorithm. Complexity 2021;2021:1-14. [DOI: 10.1155/2021/2132516] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ma L, Wang C, Xie N, Shi M, Ye Y, Wang L. Moth-flame optimization algorithm based on diversity and mutation strategy. Appl Intell 2021;51:5836-72. [DOI: 10.1007/s10489-020-02081-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
12 Wang W, Meng X, Xiang J, Li M. Overlapping Protein Complexes Detection Based on Multi-level Topological Similarities. Bioinformatics Research and Applications 2021. [DOI: 10.1007/978-3-030-91415-8_19] [Reference Citation Analysis]
13 Zhang H, Li R, Cai Z, Gu Z, Heidari AA, Wang M, Chen H, Chen M. Advanced orthogonal moth flame optimization with Broyden–Fletcher–Goldfarb–Shanno algorithm: Framework and real-world problems. Expert Systems with Applications 2020;159:113617. [DOI: 10.1016/j.eswa.2020.113617] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
14 Chellal M, Benmessahel I. Dynamic Complex Protein Detection using Binary Harris Hawks Optimization. J Phys : Conf Ser 2020;1642:012019. [DOI: 10.1088/1742-6596/1642/1/012019] [Reference Citation Analysis]
15 Xu H, Przystupa K, Fang C, Marciniak A, Kochan O, Beshley M. A Combination Strategy of Feature Selection Based on an Integrated Optimization Algorithm and Weighted K-Nearest Neighbor to Improve the Performance of Network Intrusion Detection. Electronics 2020;9:1206. [DOI: 10.3390/electronics9081206] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
16 Li Y, Zhu X, Liu J. An Improved Moth-Flame Optimization Algorithm for Engineering Problems. Symmetry 2020;12:1234. [DOI: 10.3390/sym12081234] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
17 Meng Z, Chen Y, Li X, Yang C, Zhong Y. Enhancing QUasi-Affine TRansformation Evolution (QUATRE) with adaptation scheme on numerical optimization. Knowledge-Based Systems 2020;197:105908. [DOI: 10.1016/j.knosys.2020.105908] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
18 Wang R, Wang C, Liu G. A novel graph clustering method with a greedy heuristic search algorithm for mining protein complexes from dynamic and static PPI networks. Information Sciences 2020;522:275-98. [DOI: 10.1016/j.ins.2020.02.063] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
19 Zhang H, Heidari AA, Wang M, Zhang L, Chen H, Li C. Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules. Energy Conversion and Management 2020;211:112764. [DOI: 10.1016/j.enconman.2020.112764] [Cited by in Crossref: 102] [Cited by in F6Publishing: 83] [Article Influence: 51.0] [Reference Citation Analysis]
20 Chen C, Li Y, Qian H, Zheng Z, Hu Y. Multi-view semi-supervised learning for classification on dynamic networks. Knowledge-Based Systems 2020;195:105698. [DOI: 10.1016/j.knosys.2020.105698] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
21 Helmi A, Alenany A. An enhanced Moth-flame optimization algorithm for permutation-based problems. Evol Intel 2020;13:741-64. [DOI: 10.1007/s12065-020-00389-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Kumar U, Banerjee A, Kala R. Collision avoiding decentralized sorting of robotic swarm. Appl Intell 2020;50:1316-26. [DOI: 10.1007/s10489-019-01602-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Xie Y, Yao C, Gong M, Chen C, Qin A. Graph convolutional networks with multi-level coarsening for graph classification. Knowledge-Based Systems 2020;194:105578. [DOI: 10.1016/j.knosys.2020.105578] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
24 Hussien AG, Amin M, Abd El Aziz M. A comprehensive review of moth-flame optimisation: variants, hybrids, and applications. Journal of Experimental & Theoretical Artificial Intelligence 2020;32:705-25. [DOI: 10.1080/0952813x.2020.1737246] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 13.0] [Reference Citation Analysis]
25 Abderazek H, Yildiz AR, Mirjalili S. Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowledge-Based Systems 2020;191:105237. [DOI: 10.1016/j.knosys.2019.105237] [Cited by in Crossref: 71] [Cited by in F6Publishing: 60] [Article Influence: 35.5] [Reference Citation Analysis]
26 Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y. An Improved Moth-Flame Optimization algorithm with hybrid search phase. Knowledge-Based Systems 2020;191:105277. [DOI: 10.1016/j.knosys.2019.105277] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 25.5] [Reference Citation Analysis]
27 Abderazek H, Yildiz AR, Mirjalili S. Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowledge-Based Systems 2020;191:105237. [DOI: 10.1016/j.knosys.2019.105237] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Zeng Y, Xu Z, He Y, Rao Y. Fuzzy entropy clustering by searching local border points for the analysis of gene expression data. Knowledge-Based Systems 2020;190:105309. [DOI: 10.1016/j.knosys.2019.105309] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Nayak J, Vakula K, Dinesh P, Naik B. Moth Flame Optimization: Developments and Challenges up to 2020. Computational Intelligence in Pattern Recognition 2020. [DOI: 10.1007/978-981-15-2449-3_40] [Reference Citation Analysis]
30 Elattar EE, Elsayed SK. Optimal Location and Sizing of Distributed Generators Based on Renewable Energy Sources Using Modified Moth Flame Optimization Technique. IEEE Access 2020;8:109625-38. [DOI: 10.1109/access.2020.3001758] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
31 Huang L, Zhan Y, Li Q. Application Research of Dynamic Programming Optimal Algorithm in Locomotive Wheelset Detection System. 2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) 2019. [DOI: 10.1109/3m-nano46308.2019.8947418] [Reference Citation Analysis]