BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ramakrishna S, Muddashetty RS. Emerging Role of microRNAs in Dementia. J Mol Biol 2019;431:1743-62. [PMID: 30738891 DOI: 10.1016/j.jmb.2019.01.046] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Swaroop S, Adlakha YK. Crosstalk between microRNAs and epigenetics during brain development and neurological diseases. Transcription and Translation in Health and Disease 2023. [DOI: 10.1016/b978-0-323-99521-4.00009-x] [Reference Citation Analysis]
2 Chauhan S, Behl T, Sehgal A, Singh S, Sharma N, Gupta S, Albratty M, Najmi A, Meraya AM, Alhazmi HA. Understanding the Intricate Role of Exosomes in Pathogenesis of Alzheimer's Disease. Neurotox Res 2022;40:1758-73. [PMID: 36564606 DOI: 10.1007/s12640-022-00621-4] [Reference Citation Analysis]
3 Rafiee M, Nosrati R, Babaei P. Protective effect of miR-34c antagomir against STZ-induced memory impairment by targeting mTOR and PSD-95 in the hippocampus of rats. Neurosci Lett 2022;789:136881. [PMID: 36152745 DOI: 10.1016/j.neulet.2022.136881] [Reference Citation Analysis]
4 Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. Nanomaterials 2022;12:2267. [DOI: 10.3390/nano12132267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Wang W, Gu XH, Li M, Cheng ZJ, Tian S, Liao Y, Liu X. MicroRNA-155-5p Targets SKP2, Activates IKKβ, Increases Aβ Aggregation, and Aggravates a Mouse Alzheimer Disease Model. J Neuropathol Exp Neurol 2021:nlab116. [PMID: 34865098 DOI: 10.1093/jnen/nlab116] [Reference Citation Analysis]
6 Vu CA, Lai HY, Chang CY, Chan HW, Chen WY. Optimizing surface modification of silicon nanowire field-effect transistors by polyethylene glycol for MicroRNA detection. Colloids Surf B Biointerfaces 2022;209:112142. [PMID: 34666283 DOI: 10.1016/j.colsurfb.2021.112142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ceylan H. Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer's Disease: Insights from a Synaptic Machinery Perspective. J Mol Neurosci 2021. [PMID: 34414562 DOI: 10.1007/s12031-021-01893-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
8 Garofalo M, Pandini C, Sproviero D, Pansarasa O, Cereda C, Gagliardi S. Advances with Long Non-Coding RNAs in Alzheimer's Disease as Peripheral Biomarker. Genes (Basel) 2021;12:1124. [PMID: 34440298 DOI: 10.3390/genes12081124] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
9 Kramarz B, Huntley RP, Rodríguez-López M, Roncaglia P, Saverimuttu SCC, Parkinson H, Bandopadhyay R, Martin MJ, Orchard S, Hooper NM, Brough D, Lovering RC. Gene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data. J Alzheimers Dis 2020;75:1417-35. [PMID: 32417785 DOI: 10.3233/JAD-200207] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
10 Pirola L, Ciesielski O, Biesiekierska M, Balcerczyk A. Modulation of noncoding RNAs (ncRNAs) and their potential role as therapeutics. Medical Epigenetics 2021. [DOI: 10.1016/b978-0-12-823928-5.00041-4] [Reference Citation Analysis]
11 Grinkevich LN. The role of microRNAs in learning and long-term memory. Vestn VOGiS 2020;24:885-896. [DOI: 10.18699/vj20.687] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Han L, Tang Y, Bai X, Liang X, Fan Y, Shen Y, Huang F, Wang J. Association of the serum microRNA-29 family with cognitive impairment in Parkinson's disease. Aging (Albany NY) 2020;12:13518-28. [PMID: 32649312 DOI: 10.18632/aging.103458] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
13 Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020;7:8. [PMID: 32118035 DOI: 10.3389/fmolb.2020.00008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
14 Chen YT, Wong LL, Liew OW, Richards AM. Heart Failure with Reduced Ejection Fraction (HFrEF) and Preserved Ejection Fraction (HFpEF): The Diagnostic Value of Circulating MicroRNAs. Cells 2019;8:E1651. [PMID: 31888288 DOI: 10.3390/cells8121651] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
15 Chin-chan M, Cobos-puc L, Alvarado-cruz I, Bayar M, Ermolaeva M. Early-life Pb exposure as a potential risk factor for Alzheimer’s disease: are there hazards for the Mexican population? J Biol Inorg Chem 2019;24:1285-303. [DOI: 10.1007/s00775-019-01739-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
16 Russo MA, Tomino C, Vernucci E, Limana F, Sansone L, Frustaci A, Tafani M. Hypoxia and Inflammation as a Consequence of β-Fibril Accumulation: A Perspective View for New Potential Therapeutic Targets. Oxid Med Cell Longev 2019;2019:7935310. [PMID: 31346362 DOI: 10.1155/2019/7935310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Zhao Y, Sharfman NM, Jaber VR, Lukiw WJ. Down-Regulation of Essential Synaptic Components by GI-Tract Microbiome-Derived Lipopolysaccharide (LPS) in LPS-Treated Human Neuronal-Glial (HNG) Cells in Primary Culture: Relevance to Alzheimer's Disease (AD). Front Cell Neurosci 2019;13:314. [PMID: 31354434 DOI: 10.3389/fncel.2019.00314] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
18 Morena F, Oikonomou V, Argentati C, Bazzucchi M, Emiliani C, Gritti A, Martino S. Integrated Computational Analysis Highlights unique miRNA Signatures in the Subventricular Zone and Striatum of GM2 Gangliosidosis Animal Models. Int J Mol Sci 2019;20:E3179. [PMID: 31261761 DOI: 10.3390/ijms20133179] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
19 Hosaka T, Yamashita T, Tamaoka A, Kwak S. Extracellular RNAs as Biomarkers of Sporadic Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Int J Mol Sci 2019;20:E3148. [PMID: 31252669 DOI: 10.3390/ijms20133148] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
20 Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer's Disease: Diagnostic Markers or Therapeutic Agents? Front Pharmacol 2019;10:665. [PMID: 31275145 DOI: 10.3389/fphar.2019.00665] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 16.5] [Reference Citation Analysis]
21 Freude K, Krauss S. Dementia, Brain Disorders and Molecular Mechanisms. Journal of Molecular Biology 2019;431:1709-10. [DOI: 10.1016/j.jmb.2019.03.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]