BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mojica L, Gonzalez de Mejia E, Granados-silvestre MÁ, Menjivar M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. Journal of Functional Foods 2017;31:274-86. [DOI: 10.1016/j.jff.2017.02.006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Carrera-Alvarado G, Toldrá F, Mora L. DPP-IV Inhibitory Peptides GPF, IGL, and GGGW Obtained from Chicken Blood Hydrolysates. Int J Mol Sci 2022;23. [PMID: 36430616 DOI: 10.3390/ijms232214140] [Reference Citation Analysis]
2 Jahandideh F, Wu J. A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. Food Science and Human Wellness 2022;11:1441-54. [DOI: 10.1016/j.fshw.2022.06.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Romero Garay MGG, Becerra-verdin EMG, Soto-domínguez A, Montalvo-gonzález E, García-magaña MDL. Health effects of peptides obtained from hydrolysed chicken by-products by the action of Bromelia pinguin and B. karatas proteases in Wistar rats induced with metabolic syndrome. IFRJ 2022;29:1078-1088. [DOI: 10.47836/ifrj.29.5.10] [Reference Citation Analysis]
4 Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022;11:3300. [DOI: 10.3390/foods11203300] [Reference Citation Analysis]
5 Alcazar‐valle M, Lugo‐cervantes E, Fonseca‐hernandez D, Mojica L. Common Beans Bioactive Components and Their Potential to Modulate Molecular Markers of Obesity and Type 2 Diabetes. Molecular Mechanisms of Functional Food 2022. [DOI: 10.1002/9781119804055.ch4] [Reference Citation Analysis]
6 Gharibzahedi SMT, Smith B, Altintas Z. Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: a review. Crit Rev Food Sci Nutr 2022;:1-31. [PMID: 36200775 DOI: 10.1080/10408398.2022.2124399] [Reference Citation Analysis]
7 Wu Q, Guo Z, Zhou Z, Jin M, Li Q, Zhou X. Recent advances in bioactive peptides from cereal-derived Foodstuffs. Int J Food Sci Nutr 2022;:1-14. [PMID: 35896503 DOI: 10.1080/09637486.2022.2104226] [Reference Citation Analysis]
8 Jannat T, Hossain MJ, El-shehawi AM, Kuddus MR, Rashid MA, Albogami S, Jafri I, El-shazly M, Haque MR. Chemical and Pharmacological Profiling of Wrightia coccinea (Roxb. Ex Hornem.) Sims Focusing Antioxidant, Cytotoxic, Antidiarrheal, Hypoglycemic, and Analgesic Properties. Molecules 2022;27:4024. [DOI: 10.3390/molecules27134024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
9 Fadimu GJ, Le TT, Gill H, Farahnaky A, Olatunde OO, Truong T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022;11:1823. [DOI: 10.3390/foods11131823] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Grancieri M, Verediano TA, Sant`ana CT, de Assis A, Toledo RL, de Mejia EG, Martino HSD. Digested protein from chia seed (Salvia hispanica L) prevents obesity and associated inflammation of adipose tissue in mice fed a high-fat diet. PharmaNutrition 2022. [DOI: 10.1016/j.phanu.2022.100298] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Peddio S, Padiglia A, Cannea FB, Crnjar R, Zam W, Sharifi-Rad J, Rescigno A, Zucca P. Common bean (Phaseolus vulgaris L.) α-amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: An update review. Phytother Res 2022. [PMID: 35485365 DOI: 10.1002/ptr.7480] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Gomes MJC, da Silva JS, Alves NEG, de Assis A, de Mejía EG, Mantovani HC, Martino HSD. Cooked common bean flour, but not its protein hydrolysate, has the potential to improve gut microbiota composition and function in BALB/c mice fed a high-fat diet added with 6-propyl-2-thiouracil. The Journal of Nutritional Biochemistry 2022. [DOI: 10.1016/j.jnutbio.2022.109022] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Manzoor M, Singh J, Gani A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022;373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
14 Duffuler P, Bhullar KS, de Campos Zani SC, Wu J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. J Agric Food Chem 2022. [PMID: 35302369 DOI: 10.1021/acs.jafc.1c06289] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
15 Añón MC, Quiroga A, Scilingo A, Tironi V. Plant Bioactive Peptides (Oilseed, Legume, Cereal, Fruit, and Vegetable). Handbook of Food Bioactive Ingredients 2022. [DOI: 10.1007/978-3-030-81404-5_18-1] [Reference Citation Analysis]
16 Tok K, Moulahoum H, Kocadag Kocazorbaz E, Zihnioglu F. Bioactive peptides: Improving the future of diabetes therapy. Bioactive Natural Products 2022. [DOI: 10.1016/b978-0-323-91250-1.00003-3] [Reference Citation Analysis]
17 Ren J, Li S, Song C, Sun X, Liu X. Black soybean-derived peptides exerted protective effect against alcohol-induced liver injury in mice. Journal of Functional Foods 2021;87:104828. [DOI: 10.1016/j.jff.2021.104828] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Indrati R. Bioactive Peptides from Legumes and Their Bioavailability. Legumes - Volume 2 [Working Title] 2021. [DOI: 10.5772/intechopen.99979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC. Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health. Protein Pept Lett 2021;28:623-42. [PMID: 33319654 DOI: 10.2174/0929866527999201211195936] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
20 Quintero-Soto MF, Chávez-Ontiveros J, Garzón-Tiznado JA, Salazar-Salas NY, Pineda-Hidalgo KV, Delgado-Vargas F, López-Valenzuela JA. Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. J Food Sci 2021;86:2962-77. [PMID: 34076269 DOI: 10.1111/1750-3841.15778] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
21 Nagaoka S, Takeuchi A, Banno A. Plant-derived peptides improving lipid and glucose metabolism. Peptides 2021;142:170577. [PMID: 34033874 DOI: 10.1016/j.peptides.2021.170577] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
22 Ramírez K, Pineda-hidalgo KV, Rochín-medina JJ. Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. LWT 2021;138:110685. [DOI: 10.1016/j.lwt.2020.110685] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
23 Li H, Zhou H, Zhang J, Fu X, Ying Z, Liu X. Proteinaceous α-amylase inhibitors: purification, detection methods, types and mechanisms. International Journal of Food Properties 2021;24:277-90. [DOI: 10.1080/10942912.2021.1876087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wu S, He Z, Wang Q, Wu F, Liu X. Response Surface Optimization of Enzymatic Hydrolysis of Peptides of Chinese Pecan (Carya cathayensis) and Analysis of Their Antioxidant Capacities and Structures. Int J Pept Res Ther 2021;27:1239-51. [DOI: 10.1007/s10989-021-10164-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Liu W, Chen L, Wei Y, Li G, Liu Y, Wang Y, Wang Y, Qin X, Cui X, Gu R, Lu J. Applications in nutrition: clinical nutrition. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00019-4] [Reference Citation Analysis]
26 Jimenez-garcia SN, Garcia-mier L, Vazquez-cruz MA, Ramirez-gomez XS, Guevara-gonzalez RG, Garcia-trejo JF, Feregrino-perez AA. Role of Natural Bio-active Compounds as Antidiabetic Agents. Advanced Structured Materials 2021. [DOI: 10.1007/978-3-030-54027-2_15] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Xu F, Gonzalez de Mejia E. Methodologies for bioactivity assay: animal study. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00022-4] [Reference Citation Analysis]
28 Chan-Zapata I, Sandoval-Castro C, Segura-Campos MR. Proteins and peptides from vegetable food sources as therapeutic adjuvants for the type 2 diabetes mellitus. Crit Rev Food Sci Nutr 2020;:1-10. [PMID: 33297733 DOI: 10.1080/10408398.2020.1857331] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
29 Flores‐medellín SA, Camacho‐ruiz RM, Guízar‐gonzález C, Rivera‐leon EA, Llamas‐covarrubias IM, Mojica L. Protein hydrolysates and phenolic compounds from fermented black beans inhibit markers related to obesity and type‐2 diabetes. Legume Science 2021;3. [DOI: 10.1002/leg3.64] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Ohara A, Cason VG, Nishide TG, Miranda de Matos F, de Castro RJS. Improving the antioxidant and antidiabetic properties of common bean proteins by enzymatic hydrolysis using a blend of proteases. Biocatalysis and Biotransformation 2021;39:100-8. [DOI: 10.1080/10242422.2020.1789114] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
31 Yalçin E, Rakicioğlu N. Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 2020. [DOI: 10.33631/duzcesbed.559968] [Reference Citation Analysis]
32 Bhullar KS, Wu J. Dietary peptides in aging: Evidence and prospects. Food Science and Human Wellness 2020;9:1-7. [DOI: 10.1016/j.fshw.2020.01.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
33 Gomes MJ, Lima SL, Alves NE, Assis A, Moreira ME, Toledo RC, Rosa CO, Teixeira OR, Bassinello PZ, De Mejía EG, Martino HS. Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutrition, Metabolism and Cardiovascular Diseases 2020;30:141-50. [DOI: 10.1016/j.numecd.2019.07.020] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
34 Moreno-Valdespino CA, Luna-Vital D, Camacho-Ruiz RM, Mojica L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res Int 2020;130:108905. [PMID: 32156360 DOI: 10.1016/j.foodres.2019.108905] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 15.3] [Reference Citation Analysis]
35 Mada SB, Ugwu CP, Abarshi MM. Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. Int J Pept Res Ther 2020;26:831-48. [DOI: 10.1007/s10989-019-09890-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
36 de Lima SLS, Gomes MJC, da Silva BP, Alves NEG, Toledo RCL, Theodoro JMV, Moreira MEC, Bento JAC, Bassinello PZ, da Matta SLP, De Mejía EG, Martino HSD. Whole flour and protein hydrolysate from common beans reduce the inflammation in BALB/c mice fed with high fat high cholesterol diet. Food Res Int 2019;122:330-9. [PMID: 31229086 DOI: 10.1016/j.foodres.2019.04.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
37 Valencia-Mejía E, Batista KA, Fernández JJA, Fernandes KF. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.). Food Res Int 2019;121:238-46. [PMID: 31108745 DOI: 10.1016/j.foodres.2019.03.043] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
38 Nuñez-aragón PN, Segura-campos M, Negrete-león E, Acevedo-fernández JJ, Betancur-ancona D, Chel-guerrero L, Castañeda-corral G. Protein hydrolysates and ultrafiltered < 1 KDa fractions from Phaseolus lunatus , Phaseolus vulgaris and Mucuna pruriens exhibit antihyperglycemic activity, intestinal glucose absorption and α -glucosidase inhibition with no acute toxicity in rodents: Antihyperglycemic activity and toxicity of protein hydrolysates of three legumes. J Sci Food Agric 2019;99:587-95. [DOI: 10.1002/jsfa.9219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
39 Gianfranceschi GL, Gianfranceschi G, Quassinti L, Bramucci M. Biochemical requirements of bioactive peptides for nutraceutical efficacy. Journal of Functional Foods 2018;47:252-63. [DOI: 10.1016/j.jff.2018.05.034] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
40 Jiang M, Yan H, He R, Ma Y. Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. Eur Food Res Technol 2018;244:1995-2005. [DOI: 10.1007/s00217-018-3111-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
41 Wang J, Du K, Fang L, Liu C, Min W, Liu J. Evaluation of the antidiabetic activity of hydrolyzed peptides derived from Juglans mandshurica Maxim. fruits in insulin-resistant HepG2 cells and type 2 diabetic mice. J Food Biochem 2018;42:e12518. [DOI: 10.1111/jfbc.12518] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
42 Los FGB, Zielinski AAF, Wojeicchowski JP, Nogueira A, Demiate IM. Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Current Opinion in Food Science 2018;19:63-71. [DOI: 10.1016/j.cofs.2018.01.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
43 Zhang Y, Zhang L, Ban Q, Li J, Li C, Guan Y. Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery. Nanomedicine: Nanotechnology, Biology and Medicine 2018;14:353-64. [DOI: 10.1016/j.nano.2017.11.012] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 6.6] [Reference Citation Analysis]
44 Zhao X, Wang D, Qin L, Yang X, Gao C. Comparative investigation for hypoglycemic effects of polysaccharides from four substitutes of Lonicera japonica in Chinese medicine. Int J Biol Macromol 2018;109:12-20. [PMID: 29247727 DOI: 10.1016/j.ijbiomac.2017.12.073] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
45 Mojica L, Berhow M, Gonzalez de Mejia E. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem 2017;229:628-39. [PMID: 28372224 DOI: 10.1016/j.foodchem.2017.02.124] [Cited by in Crossref: 89] [Cited by in F6Publishing: 89] [Article Influence: 14.8] [Reference Citation Analysis]