BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oseguera Toledo ME, Gonzalez de Mejia E, Sivaguru M, Amaya-llano SL. Common bean ( Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro. Journal of Functional Foods 2016;27:160-77. [DOI: 10.1016/j.jff.2016.09.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Garcés-Rimón M, Morales D, Miguel-Castro M. Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients 2022;14. [PMID: 36558429 DOI: 10.3390/nu14245271] [Reference Citation Analysis]
2 Shukla P, Sakure A, Pipaliya R, Basaiawmoit B, Maurya R, Bishnoi M, Kondepudi KK, Hati S. Exploring the potential of Lacticaseibacillus paracasei M11 on antidiabetic, anti-inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries) and the release of antidiabetic and anti-hypertensive peptides. J Food Biochem 2022;46:e14449. [PMID: 36206543 DOI: 10.1111/jfbc.14449] [Reference Citation Analysis]
3 Alcazar‐valle M, Lugo‐cervantes E, Fonseca‐hernandez D, Mojica L. Common Beans Bioactive Components and Their Potential to Modulate Molecular Markers of Obesity and Type 2 Diabetes. Molecular Mechanisms of Functional Food 2022. [DOI: 10.1002/9781119804055.ch4] [Reference Citation Analysis]
4 Mousavi B, Azizi M, Abbasi S. Antidiabetic bio-peptides of soft and hard wheat glutens. Food Chemistry: Molecular Sciences 2022;4:100104. [DOI: 10.1016/j.fochms.2022.100104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yuan H, Luo Z, Ban Z, Reiter RJ, Ma Q, Liang Z, Yang M, Li X, Li L. Bioactive peptides of plant origin: distribution, functionality, and evidence of benefits in food and health. Food Funct 2022;13:3133-58. [PMID: 35244644 DOI: 10.1039/d1fo04077d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hernández-ledesma B, Fernández-tomé S, Amigo L. Bioactive peptides against inflammatory intestinal disorders and obesity. Bioactive Food Components Activity in Mechanistic Approach 2022. [DOI: 10.1016/b978-0-12-823569-0.00010-2] [Reference Citation Analysis]
7 Ramírez Fuentes L, Richard C, Chen L. Sequential alcalase and flavourzyme treatment for preparation of α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory peptides from oat protein. Journal of Functional Foods 2021;87:104829. [DOI: 10.1016/j.jff.2021.104829] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
8 Elam E, Feng J, Lv Y, Ni Z, Sun P, Thakur K, Zhang J, Ma Y, Wei Z. Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. Journal of Functional Foods 2021;86:104674. [DOI: 10.1016/j.jff.2021.104674] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Conti MV, Guzzetti L, Panzeri D, De Giuseppe R, Coccetti P, Labra M, Cena H. Bioactive compounds in legumes: Implications for sustainable nutrition and health in the elderly population. Trends in Food Science & Technology 2021;117:139-47. [DOI: 10.1016/j.tifs.2021.02.072] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
10 Shi Z, Zhang X, Zhu Y, Yao Y, Ren G. Natural Extracts from White Common Bean (Phaseolus vulgaris L.) Inhibit 3T3-L1 Adipocytes Differentiation. Applied Sciences 2021;11:167. [DOI: 10.3390/app11010167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Acquah C, Dzuvor CKO, Tosh S, Agyei D. Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Crit Rev Food Sci Nutr 2020;:1-14. [PMID: 33317324 DOI: 10.1080/10408398.2020.1851168] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
12 Chan-Zapata I, Sandoval-Castro C, Segura-Campos MR. Proteins and peptides from vegetable food sources as therapeutic adjuvants for the type 2 diabetes mellitus. Crit Rev Food Sci Nutr 2020;:1-10. [PMID: 33297733 DOI: 10.1080/10408398.2020.1857331] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020;165:2143-96. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Cited by in Crossref: 72] [Cited by in F6Publishing: 58] [Article Influence: 24.0] [Reference Citation Analysis]
14 Flores‐medellín SA, Camacho‐ruiz RM, Guízar‐gonzález C, Rivera‐leon EA, Llamas‐covarrubias IM, Mojica L. Protein hydrolysates and phenolic compounds from fermented black beans inhibit markers related to obesity and type‐2 diabetes. Legume Science 2021;3. [DOI: 10.1002/leg3.64] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Maleki S, Razavi SH. Pulses' germination and fermentation: Two bioprocessing against hypertension by releasing ACE inhibitory peptides. Crit Rev Food Sci Nutr 2021;61:2876-93. [PMID: 32662284 DOI: 10.1080/10408398.2020.1789551] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
16 de Fátima Garcia B, de Barros M, de Souza Rocha T. Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Crit Rev Food Sci Nutr 2021;61:2003-21. [PMID: 32478570 DOI: 10.1080/10408398.2020.1768047] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
17 Bhullar KS, Wu J. Dietary peptides in aging: Evidence and prospects. Food Science and Human Wellness 2020;9:1-7. [DOI: 10.1016/j.fshw.2020.01.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
18 Gomes MJ, Lima SL, Alves NE, Assis A, Moreira ME, Toledo RC, Rosa CO, Teixeira OR, Bassinello PZ, De Mejía EG, Martino HS. Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutrition, Metabolism and Cardiovascular Diseases 2020;30:141-50. [DOI: 10.1016/j.numecd.2019.07.020] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
19 Halenova T, Raksha N, Kravchenko O, Vovk T, Yurchenko A, Vareniuk I, Savchuk O, Ostapchenko L. Hypoglycemic activity of Phaseolus vulgaris (L.) aqueous extract in type 1 diabetic rats. Current Issues in Pharmacy and Medical Sciences 2019;32:210-8. [DOI: 10.2478/cipms-2019-0036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
20 Moreno-Valdespino CA, Luna-Vital D, Camacho-Ruiz RM, Mojica L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res Int 2020;130:108905. [PMID: 32156360 DOI: 10.1016/j.foodres.2019.108905] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 15.3] [Reference Citation Analysis]
21 Valencia-Mejía E, Batista KA, Fernández JJA, Fernandes KF. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.). Food Res Int 2019;121:238-46. [PMID: 31108745 DOI: 10.1016/j.foodres.2019.03.043] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
22 Kehinde BA, Sharma P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Crit Rev Food Sci Nutr 2020;60:322-40. [PMID: 30463420 DOI: 10.1080/10408398.2018.1528206] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 9.8] [Reference Citation Analysis]
23 Nuñez-aragón PN, Segura-campos M, Negrete-león E, Acevedo-fernández JJ, Betancur-ancona D, Chel-guerrero L, Castañeda-corral G. Protein hydrolysates and ultrafiltered < 1 KDa fractions from Phaseolus lunatus , Phaseolus vulgaris and Mucuna pruriens exhibit antihyperglycemic activity, intestinal glucose absorption and α -glucosidase inhibition with no acute toxicity in rodents: Antihyperglycemic activity and toxicity of protein hydrolysates of three legumes. J Sci Food Agric 2019;99:587-95. [DOI: 10.1002/jsfa.9219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
24 Los FGB, Zielinski AAF, Wojeicchowski JP, Nogueira A, Demiate IM. Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Current Opinion in Food Science 2018;19:63-71. [DOI: 10.1016/j.cofs.2018.01.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
25 de Castro RJS, Cason VG, Sato HH. Binary mixture of proteases increases the antioxidant properties of white bean (Phaseolus vulgaris L.) protein-derived peptides obtained by enzymatic hydrolysis. Biocatalysis and Agricultural Biotechnology 2017;10:291-7. [DOI: 10.1016/j.bcab.2017.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
26 Mojica L, Gonzalez de Mejia E, Granados-silvestre MÁ, Menjivar M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. Journal of Functional Foods 2017;31:274-86. [DOI: 10.1016/j.jff.2017.02.006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 8.7] [Reference Citation Analysis]