BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nongonierma AB, Fitzgerald RJ. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. Journal of Functional Foods 2015;17:640-56. [DOI: 10.1016/j.jff.2015.06.021] [Cited by in Crossref: 149] [Cited by in F6Publishing: 152] [Article Influence: 18.6] [Reference Citation Analysis]
Number Citing Articles
1 Das M, Halder A, Chatterjee R, Gangopadhyay A, Dey TK, Roy S, Dhar P, Chakrabarti J. In Vitro Structure–Activity Relationship Study of a Novel Octapeptide Angiotensin-I Converting Enzyme (ACE) Inhibitor from the Freshwater Mussel Lamellidens marginalis. Int J Pept Res Ther 2023;29:18. [DOI: 10.1007/s10989-023-10495-5] [Reference Citation Analysis]
2 Beresford T. Cheese and cardiovascular diseases. Functional Foods and Their Implications for Health Promotion 2023. [DOI: 10.1016/b978-0-12-823811-0.00014-6] [Reference Citation Analysis]
3 Lordan R, Dermiki M. Fermented milk, yogurt beverages, and probiotics. Functional Foods and Their Implications for Health Promotion 2023. [DOI: 10.1016/b978-0-12-823811-0.00010-9] [Reference Citation Analysis]
4 Dary Guerra-fajardo L, Pavón-pérez J, Vallejos-almirall A, Jorquera-pereira D. Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chemistry 2022;397:133784. [DOI: 10.1016/j.foodchem.2022.133784] [Reference Citation Analysis]
5 Zhu K, Zou H, Chen J, Hu J, Xiong S, Fu J, Xiong Y, Huang X. Rapid and sensitive determination of lactoferrin in milk powder by boronate affinity amplified dynamic light scattering immunosensor. Food Chemistry 2022. [DOI: 10.1016/j.foodchem.2022.134983] [Reference Citation Analysis]
6 Khatun S, Appidi T, Rengan AK. Casein nanoformulations - Potential biomaterials in theranostics. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.102200] [Reference Citation Analysis]
7 Liu G, Guo B, Luo M, Sun S, Lin Q, Kan Q, He Z, Miao J, Du H, Xiao H, Cao Y. A comprehensive review on preparation, structure-activities relationship, and calcium bioavailability of casein phosphopeptides. Crit Rev Food Sci Nutr 2022;:1-19. [PMID: 36052610 DOI: 10.1080/10408398.2022.2111546] [Reference Citation Analysis]
8 Oussaief O, Jrad Z, Adt I, Kaddes K, Khorchani T, Degraeve P, El Hatmi H. Antioxidant, lipase and ACE ‐inhibitory properties of camel lactoferrin and its enzymatic hydrolysates. Int J of Dairy Tech. [DOI: 10.1111/1471-0307.12904] [Reference Citation Analysis]
9 Caira S, Picariello G, Renzone G, Arena S, Troise AD, De Pascale S, Ciaravolo V, Pinto G, Addeo F, Scaloni A. Recent developments in peptidomics for the quali-quantitative analysis of food-derived peptides in human body fluids and tissues. Trends in Food Science & Technology 2022;126:41-60. [DOI: 10.1016/j.tifs.2022.06.014] [Reference Citation Analysis]
10 Shukla P, Chopada K, Sakure A, Hati S. Current Trends and Applications of Food-derived Antihypertensive Peptides for the Management of Cardiovascular Disease. PPL 2022;29:408-428. [DOI: 10.2174/0929866529666220106100225] [Reference Citation Analysis]
11 Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. Food Reviews International. [DOI: 10.1080/87559129.2022.2062763] [Reference Citation Analysis]
12 Bu T, Zhang L, Liu L, Yu S, Zheng J, Wu J, Yang K. Evaluation of the anti-osteoporotic effect of a low-phenylalanine whey protein hydrolysate in an ovariectomized mice model. Food Funct 2022;13:3957-67. [PMID: 35293905 DOI: 10.1039/d1fo04030h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Gruppi A, Dermiki M, Spigno G, Fitzgerald RJ. Impact of Enzymatic Hydrolysis and Heat Inactivation on the Physicochemical Properties of Milk Protein Hydrolysates. Foods 2022;11:516. [DOI: 10.3390/foods11040516] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Stobiecka M, Król J, Brodziak A. Antioxidant Activity of Milk and Dairy Products. Animals 2022;12:245. [DOI: 10.3390/ani12030245] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
15 Dullius A, Rama GR, Giroldi M, Goettert MI, Lehn DN, Volken de Souza CF. Bioactive peptide production in fermented foods. Current Developments in Biotechnology and Bioengineering 2022. [DOI: 10.1016/b978-0-12-823506-5.00009-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gurumayum S, Kaur S, Rasane P, Singh J. Global scenario of fermented dairy products: current advancements and future challenges. Advances in Dairy Microbial Products 2022. [DOI: 10.1016/b978-0-323-85793-2.00011-4] [Reference Citation Analysis]
17 Akkurt S, Tomasula PM. Bioactivity of Milk Components. Encyclopedia of Dairy Sciences 2022. [DOI: 10.1016/b978-0-12-818766-1.00286-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Rendón-rosales MÁ, Torres-llanez MJ, Mazorra-manzano MA, González-córdova AF, Hernández-mendoza A, Vallejo-cordoba B. In vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with Lactococcus lactis NRRL B-50571 and NRRL B-50572. LWT 2022;154:112581. [DOI: 10.1016/j.lwt.2021.112581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ceren Akal H, Ozturkoglu-budak S. Dairy-derived antimicrobial substances: microorganisms, applications and recent trends. Advances in Dairy Microbial Products 2022. [DOI: 10.1016/b978-0-323-85793-2.00014-x] [Reference Citation Analysis]
20 Van Pamel E, Cnops G, Van Droogenbroeck B, Delezie EC, Van Royen G, Vlaemynck GM, Aper J, Muylle H, Bekaert KM, Cooreman K, Robbens J, Delbare D, Roldan-ruiz I, Crivits M, De Ruyck H, Herman L. Opportunities within the Agri-food System to Encourage a Nutritionally Balanced Diet – Part I. Food Reviews International 2021;37:706-757. [DOI: 10.1080/87559129.2020.1719504] [Reference Citation Analysis]
21 Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A. Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 2021;11:428. [PMID: 34513551 DOI: 10.1007/s13205-021-02928-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
22 Igual M, García-segovia P, Martínez-monzó J. Amino acids and protein in vitro bio-accessibility from edible insect and pea protein enriched bread. Journal of Insects as Food and Feed 2021;7:1001-9. [DOI: 10.3920/jiff2020.0122] [Reference Citation Analysis]
23 Dey TK, Chatterjee R, Mandal RS, Roychoudhury A, Paul D, Roy S, Pateiro M, Das AK, Lorenzo JM, Dhar P. ACE Inhibitory Peptides from Bellamya bengalensis Protein Hydrolysates: In Vitro and In Silico Molecular Assessment. Processes 2021;9:1316. [DOI: 10.3390/pr9081316] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Hammam ARA, Martínez-Monteagudo SI, Metzger LE. Progress in micellar casein concentrate: Production and applications. Compr Rev Food Sci Food Saf 2021. [PMID: 34288367 DOI: 10.1111/1541-4337.12795] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
25 Yüksel D, İnanç AL. Farklı Tekniklerle Üretilen Maraş Tarhanalarındaki Biyoaktif Peptitlerin Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 2021. [DOI: 10.18016/ksutarimdoga.vi.887719] [Reference Citation Analysis]
26 Xue H, Han J, He B, Yi M, Liu X, Song H, Li J. Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats. Food Funct 2021;12:5157-70. [PMID: 33977978 DOI: 10.1039/d1fo00356a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Mezzomo TR, Martins CAF, da Silva Marcondes DB, Mischiatti KL, Weffort-santos AM. Assessment of the Functional Activities of Casein Phosphopeptides on Circulating Blood Leukocytes. Int J Pept Res Ther 2021;27:1265-1280. [DOI: 10.1007/s10989-021-10166-3] [Reference Citation Analysis]
28 Petit N, Dyer JM, Clerens S, Gerrard JA, Domigan LJ. Oral delivery of self-assembling bioactive peptides to target gastrointestinal tract disease. Food Funct 2020;11:9468-88. [PMID: 33155590 DOI: 10.1039/d0fo01801e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 John JA, Ghosh BC. Production of whey protein hydrolyzates and its incorporation into milk. Food Prod Process and Nutr 2021;3. [DOI: 10.1186/s43014-021-00055-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Rumbold P, McCullogh N, Boldon R, Haskell-Ramsay C, James L, Stevenson E, Green B. The potential nutrition-, physical- and health-related benefits of cow's milk for primary-school-aged children. Nutr Res Rev 2021;:1-20. [PMID: 33902780 DOI: 10.1017/S095442242100007X] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Yang W, Hao X, Zhang X, Zhang G, Li X, Liu L, Sun Y, Pan Y. Identification of antioxidant peptides from cheddar cheese made with Lactobacillus helveticus. LWT 2021;141:110866. [DOI: 10.1016/j.lwt.2021.110866] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
32 Athira S, Mann B, Sharma R, Pothuraju R, Bajaj RK. Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification. Food Res Int 2021;141:110133. [PMID: 33642000 DOI: 10.1016/j.foodres.2021.110133] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
33 Bu T, Zheng J, Liu L, Li S, Wu J. Milk proteins and their derived peptides on bone health: Biological functions, mechanisms, and prospects. Compr Rev Food Sci Food Saf 2021;20:2234-62. [PMID: 33522110 DOI: 10.1111/1541-4337.12707] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
34 Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021;20:1150-87. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
35 Andiç S, Ayaz RM, Oğuz Ş. A1 milk and beta-casomorphin-7. Food Health 2021;7:128-137. [DOI: 10.3153/fh21014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Baig DN, Mehnaz S. An Overview of Dairy Microflora. Microorganisms for Sustainability 2021. [DOI: 10.1007/978-981-16-0223-8_4] [Reference Citation Analysis]
37 Hafeez Z, Benoit S, Cakir-kiefer C, Dary A, Miclo L. Food protein-derived anxiolytic peptides: their potential role in anxiety management. Food Funct 2021;12:1415-31. [DOI: 10.1039/d0fo02432e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
38 Kleekayai T, Cermeño M, Fitzgerald RJ. The Production of Bioactive Peptides from Milk Proteins. Agents of Change 2021. [DOI: 10.1007/978-3-030-55482-8_18] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Minj S, Anand S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy 2020;1:233-58. [DOI: 10.3390/dairy1030016] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
40 Bu T, Zhou M, Zheng J, Yang P, Song H, Li S, Wu J. Preparation and characterization of a low-phenylalanine whey hydrolysate using two-step enzymatic hydrolysis and macroporous resin adsorption. LWT 2020;132:109753. [DOI: 10.1016/j.lwt.2020.109753] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
41 Enteshari M, Martínez‐monteagudo SI. Hydrothermal conversion of ice‐cream wastewater. J Food Process Eng 2020;43. [DOI: 10.1111/jfpe.13498] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Banihashemi SA, Nikoo M, Ghasempour Z, Ehsani A. Bioactive peptides fractions from traditional Iranian Koopeh cheese; lactic fermentation products. Biocatalysis and Agricultural Biotechnology 2020;29:101798. [DOI: 10.1016/j.bcab.2020.101798] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
43 Wang R, Wang J, Liu H, Gao Y, Zhao Q, Ling S, Wang S. Sensitive immunoassays based on specific monoclonal IgG for determination of bovine lactoferrin in cow milk samples. Food Chem 2021;338:127820. [PMID: 32827899 DOI: 10.1016/j.foodchem.2020.127820] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
44 Martini S, Conte A, Tagliazucchi D. Effect of ripening and in vitro digestion on the evolution and fate of bioactive peptides in Parmigiano-Reggiano cheese. International Dairy Journal 2020;105:104668. [DOI: 10.1016/j.idairyj.2020.104668] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
45 Yalçin E, Rakicioğlu N. Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 2020. [DOI: 10.33631/duzcesbed.559968] [Reference Citation Analysis]
46 Ozorio L, Matsubara NK, da Silva-Santos JE, Henry G, Le Gouar Y, Jardin J, Mellinger-Silva C, Cabral LMC, Dupont D. Gastrointestinal digestion enhances the endothelium-dependent vasodilation of a whey hydrolysate in rat aortic rings. Food Res Int 2020;133:109188. [PMID: 32466916 DOI: 10.1016/j.foodres.2020.109188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
47 Dey TK, Chatterjee R, Roychoudhury A, Paul D, Mandal RS, Roy S, Dhar P. In vitro and in silico analyses of the angiotensin-I converting enzyme inhibitory activity of peptides identified from Bellamya bengalensis protein hydrolysates.. [DOI: 10.1101/2020.04.09.034306] [Reference Citation Analysis]
48 Pražnikar ZJ, Kenig S, Vardjan T, Bizjak MČ, Petelin A. Effects of kefir or milk supplementation on zonulin in overweight subjects. J Dairy Sci 2020;103:3961-70. [PMID: 32171508 DOI: 10.3168/jds.2019-17696] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
49 Fitzgerald RJ, Cermeño M, Khalesi M, Kleekayai T, Amigo-benavent M. Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods 2020;64:103636. [DOI: 10.1016/j.jff.2019.103636] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 20.0] [Reference Citation Analysis]
50 Oussaief O, Jrad Z, Adt I, Dbara M, Khorchani T, El‐hatmi H. Antioxidant activities of enzymatic‐hydrolysed proteins of dromedary ( Camelus dromedarius ) colostrum. Int J Dairy Technol 2020;73:333-40. [DOI: 10.1111/1471-0307.12668] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
51 Tagliazucchi D, Martini S, Solieri L. Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. Fermentation 2019;5:96. [DOI: 10.3390/fermentation5040096] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
52 Moatsou G, Sakkas L. Sheep milk components: Focus on nutritional advantages and biofunctional potential. Small Ruminant Research 2019;180:86-99. [DOI: 10.1016/j.smallrumres.2019.07.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
53 Ruiz‐armenta XA, Zazueta‐morales JDJ, Delgado‐nieblas CI, Carrillo‐lópez A, Aguilar‐palazuelos E, Camacho‐hernández IL. Effect of the extrusion process and expansion by microwave heating on physicochemical, phytochemical, and antioxidant properties during the production of indirectly expanded snack foods. J Food Process Preserv 2019;43. [DOI: 10.1111/jfpp.14261] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
54 Ashok A, Brijesha N, Aparna H. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. European Journal of Medicinal Chemistry 2019;180:99-110. [DOI: 10.1016/j.ejmech.2019.07.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
55 Raveschot C, Cudennec B, Deracinois B, Frémont M, Vaeremans M, Dugersuren J, Demberel S, Drider D, Dhulster P, Coutte F, Flahaut C. Proteolytic activity of Lactobacillus strains isolated from Mongolian traditional dairy products: A multiparametric analysis. Food Chem 2020;304:125415. [PMID: 31479995 DOI: 10.1016/j.foodchem.2019.125415] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
56 Sánchez-rivera L, Ferreira Santos P, Sevilla MA, Montero MJ, Recio I, Miralles B. Implication of Opioid Receptors in the Antihypertensive Effect of a Bovine Casein Hydrolysate and α s1 -Casein-Derived Peptides. J Agric Food Chem 2020;68:1877-83. [DOI: 10.1021/acs.jafc.9b03872] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
57 Li J, Geng S, Wang Y, Lv Y, Wang H, Liu B, Liang G. The interaction mechanism of oligopeptides containing aromatic rings with β-cyclodextrin and its derivatives. Food Chemistry 2019;286:441-8. [DOI: 10.1016/j.foodchem.2019.02.021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
58 Kang NJ, Jin H, Lee S, Kim HJ, Koh H, Lee D. New approaches towards the discovery and evaluation of bioactive peptides from natural resources. Critical Reviews in Environmental Science and Technology 2020;50:72-103. [DOI: 10.1080/10643389.2019.1619376] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
59 Xu Q, Hong H, Wu J, Yan X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology 2019;86:399-411. [DOI: 10.1016/j.tifs.2019.02.050] [Cited by in Crossref: 119] [Cited by in F6Publishing: 122] [Article Influence: 29.8] [Reference Citation Analysis]
60 Egger L, Ménard O, Portmann R. Quantitative Characterization of Digestion Processes. In: Gouseti O, Bornhorst GM, Bakalis S, Mackie A, editors. Interdisciplinary Approaches to Food Digestion. Cham: Springer International Publishing; 2019. pp. 159-84. [DOI: 10.1007/978-3-030-03901-1_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
61 References. Cardiovascular Disease 2019. [DOI: 10.1002/9781118829875.refs] [Reference Citation Analysis]
62 Siltari A, Vapaatalo H, Korpela R. Milk and milk‐derived peptides combat against hypertension and vascular dysfunction: a review. Int J Food Sci Technol 2019;54:1920-9. [DOI: 10.1111/ijfs.14056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
63 Singh BP, Yadav D, Vij S. Soybean Bioactive Molecules: Current Trend and Future Prospective. Bioactive Molecules in Food 2019. [DOI: 10.1007/978-3-319-78030-6_4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
64 Stout M, Drake M. Flavor Aspects of Whey Protein Ingredients. Whey Proteins 2019. [DOI: 10.1016/b978-0-12-812124-5.00011-4] [Reference Citation Analysis]
65 Martínez-medina GA, Barragán AP, Ruiz HA, Ilyina A, Martínez Hernández JL, Rodríguez-jasso RM, Hoyos-concha JL, Aguilar-gonzález CN. Fungal Proteases and Production of Bioactive Peptides for the Food Industry. Enzymes in Food Biotechnology 2019. [DOI: 10.1016/b978-0-12-813280-7.00014-1] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
66 Shi J, Zhao X. Influence of the Maillard-type caseinate glycation with lactose on the intestinal barrier activity of the caseinate digest in IEC-6 cells. Food Funct 2019;10:2010-21. [DOI: 10.1039/c8fo02607f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
67 Nongonierma AB, Fitzgerald RJ. Caseinophosphopeptides. Encyclopedia of Food Chemistry 2019. [DOI: 10.1016/b978-0-08-100596-5.21745-9] [Reference Citation Analysis]
68 Coelho MS, Fernandes SS, Salas-mellado MDLM. Association Between Diet, Health, and the Presence of Bioactive Compounds in Foods. Bioactive Compounds 2019. [DOI: 10.1016/b978-0-12-814774-0.00009-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
69 Mann B, Athira S, Sharma R, Kumar R, Sarkar P. Bioactive Peptides from Whey Proteins. Whey Proteins 2019. [DOI: 10.1016/b978-0-12-812124-5.00015-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
70 Giromini C, Cheli F, Rebucci R, Baldi A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J Dairy Sci 2019;102:929-42. [PMID: 30591343 DOI: 10.3168/jds.2018-15163] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
71 Takeuchi H, Harada T. Salivary Melatonin at Night: Responding to the Night Lighting and Cow’s Milk Consumption at Breakfast in Japanese Junior High and University Students. Melatonin - Molecular Biology, Clinical and Pharmaceutical Approaches 2018. [DOI: 10.5772/intechopen.79816] [Reference Citation Analysis]
72 McIntyre I, Carolan A, O'Sullivan M, Jacquier JC, Hutchings S, Murray B, O'Riordan D. Incorporation of bioactive dairy hydrolysate influences the stability and digestion behaviour of milk protein stabilised emulsions. Food Funct 2018;9:5813-23. [PMID: 30352110 DOI: 10.1039/c8fo00912k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
73 Fang F, Hao X, Wu Y, Ying M, He P, Corcoran D, Chen Q. Selection of marker peptides from casein phosphopeptide and application for quantification in infant formula. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018;35:2077-87. [PMID: 30303766 DOI: 10.1080/19440049.2018.1523573] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
74 A. Dave L. Human Gastrointestinal Endogenous Proteins: A Recently Discovered Source of Gut Modulatory Peptides. Novel Proteins for Food, Pharmaceuticals and Agriculture 2018. [DOI: 10.1002/9781119385332.ch3] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
75 Enteshari M, Martínez-monteagudo SI. Subcritical hydrolysis of ice-cream wastewater: Modeling and functional properties of hydrolysate. Food and Bioproducts Processing 2018;111:104-13. [DOI: 10.1016/j.fbp.2018.08.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
76 Miralles B, Amigo L, Recio I. Critical Review and Perspectives on Food-Derived Antihypertensive Peptides. J Agric Food Chem 2018;66:9384-90. [DOI: 10.1021/acs.jafc.8b02603] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
77 Wang B, Xie N, Li B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. J Food Biochem 2019;43:e12571. [PMID: 31353489 DOI: 10.1111/jfbc.12571] [Cited by in Crossref: 62] [Cited by in F6Publishing: 69] [Article Influence: 12.4] [Reference Citation Analysis]
78 Lin K, Zhang L, Han X, Xin L, Meng Z, Gong P, Cheng D. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chemistry 2018;254:340-7. [DOI: 10.1016/j.foodchem.2018.02.051] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 8.4] [Reference Citation Analysis]
79 Aspri M, Leni G, Galaverna G, Papademas P. Bioactive properties of fermented donkey milk, before and after in vitro simulated gastrointestinal digestion. Food Chem 2018;268:476-84. [PMID: 30064786 DOI: 10.1016/j.foodchem.2018.06.119] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 8.6] [Reference Citation Analysis]
80 Tagliazucchi D, Martini S, Shamsia S, Helal A, Conte A. Biological activities and peptidomic profile of in vitro-digested cow, camel, goat and sheep milk. International Dairy Journal 2018;81:19-27. [DOI: 10.1016/j.idairyj.2018.01.014] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 11.4] [Reference Citation Analysis]
81 Iavarone F, Desiderio C, Vitali A, Messana I, Martelli C, Castagnola M, Cabras T. Cryptides: latent peptides everywhere. Crit Rev Biochem Mol Biol 2018;53:246-63. [PMID: 29564928 DOI: 10.1080/10409238.2018.1447543] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
82 Habibi Najafi MB, Fatemizadeh SS, Tavakoli M. Release of Proteolysis Products with ACE-Inhibitory and Antioxidant Activities in Probiotic Yogurt Containing Different Levels of Fat and Prebiotics. Int J Pept Res Ther 2019;25:367-77. [DOI: 10.1007/s10989-018-9679-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
83 Murray NM, O'Riordan D, Jacquier JC, O'Sullivan M, Holton TA, Wynne K, Robinson RC, Barile D, Nielsen SD, Dallas DC. Peptidomic screening of bitter and nonbitter casein hydrolysate fractions for insulinogenic peptides. J Dairy Sci 2018;101:2826-37. [PMID: 29428747 DOI: 10.3168/jds.2017-13853] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
84 Gallego M, Mora L, Toldrá F. Health relevance of antihypertensive peptides in foods. Current Opinion in Food Science 2018;19:8-14. [DOI: 10.1016/j.cofs.2017.12.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
85 Sidhu JS, Zafar TA. Functional Foods of the Indian Subcontinent. Food Science and Nutrition 2018. [DOI: 10.4018/978-1-5225-5207-9.ch019] [Reference Citation Analysis]
86 Yuan D, Jacquier JC, O'riordan ED. Entrapment of proteins and peptides in chitosan-polyphosphoric acid hydrogel beads: A new approach to achieve both high entrapment efficiency and controlled in vitro release. Food Chemistry 2018;239:1200-9. [DOI: 10.1016/j.foodchem.2017.07.021] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 8.6] [Reference Citation Analysis]
87 Shi J, Fu Y, Zhao X. Effects of Maillard-type caseinate glycation on the preventive action of caseinate digests in acrylamide-induced intestinal barrier dysfunction in IEC-6 cells. RSC Adv 2018;8:38036-46. [DOI: 10.1039/c8ra08103d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
88 Nongonierma AB, FitzGerald RJ. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal Bioanal Chem 2018;410:3407-23. [PMID: 29260283 DOI: 10.1007/s00216-017-0793-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
89 Shi C, Lin Z, Xiao X, Zhai X, Ma CW, Ren J. Comparisons of Processing Stability and Antioxidant Activity of the Silkworm Pupae Protein Hydrolysates by Spray-dry and Freeze-dry. International Journal of Food Engineering 2018;14:20160238. [DOI: 10.1515/ijfe-2016-0238] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
90 Nongonierma AB, FitzGerald RJ. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. J Food Biochem 2019;43:e12451. [PMID: 31353485 DOI: 10.1111/jfbc.12451] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 11.7] [Reference Citation Analysis]
91 Nongonierma AB, Fitzgerald RJ. Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science & Technology 2017;69:289-305. [DOI: 10.1016/j.tifs.2017.03.003] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 11.8] [Reference Citation Analysis]
92 Nongonierma AB, Lalmahomed M, Paolella S, Fitzgerald RJ. Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry 2017;231:202-11. [DOI: 10.1016/j.foodchem.2017.03.123] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
93 Lucarini M. Bioactive Peptides in Milk: From Encrypted Sequences to Nutraceutical Aspects. Beverages 2017;3:41. [DOI: 10.3390/beverages3030041] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
94 Tagliazucchi D, Shamsia S, Helal A, Conte A. Angiotensin-converting enzyme inhibitory peptides from goats' milk released by in vitro gastro-intestinal digestion. International Dairy Journal 2017;71:6-16. [DOI: 10.1016/j.idairyj.2017.03.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
95 Sanchón J, Fernández-Tomé S, Miralles B, Hernández-Ledesma B, Tomé D, Gaudichon C, Recio I. Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem 2018;239:486-94. [PMID: 28873595 DOI: 10.1016/j.foodchem.2017.06.134] [Cited by in Crossref: 116] [Cited by in F6Publishing: 120] [Article Influence: 19.3] [Reference Citation Analysis]
96 Corgneau M, Scher J, Ritie-pertusa L, Le DTL, Petit J, Nikolova Y, Banon S, Gaiani C. Recent advances on lactose intolerance: Tolerance thresholds and currently available answers. Critical Reviews in Food Science and Nutrition 2017;57:3344-56. [DOI: 10.1080/10408398.2015.1123671] [Cited by in Crossref: 44] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
97 Le Maux S, Nongonierma AB, FitzGerald RJ. Peptide composition and dipeptidyl peptidase IV inhibitory properties of β-lactoglobulin hydrolysates having similar extents of hydrolysis while generated using different enzyme-to-substrate ratios. Food Res Int 2017;99:84-90. [PMID: 28784550 DOI: 10.1016/j.foodres.2017.05.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
98 Reyes-díaz A, González-córdova AF, Hernández-mendoza A, Reyes-díaz R, Vallejo-cordoba B. Immunomodulation by hydrolysates and peptides derived from milk proteins. Int J Dairy Technol 2018;71:1-9. [DOI: 10.1111/1471-0307.12421] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
99 Cattaneo S, Stuknytė M, Ferraretto A, De Noni I. Impact of the in vitro gastrointestinal digestion protocol on casein phosphopeptide profile of Grana Padano cheese digestates. LWT 2017;77:356-61. [DOI: 10.1016/j.lwt.2016.11.069] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
100 Egger L, Ménard O. Update on bioactive peptides after milk and cheese digestion. Current Opinion in Food Science 2017;14:116-21. [DOI: 10.1016/j.cofs.2017.03.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
101 Albuquerque PB, Cerqueira MA, Vicente AA, Teixeira JA, Carneiro-da-cunha MG. Immobilization of bioactive compounds in Cassia grandis galactomannan-based films: Influence on physicochemical properties. International Journal of Biological Macromolecules 2017;96:727-35. [DOI: 10.1016/j.ijbiomac.2016.12.081] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
102 Nongonierma AB, Mazzocchi C, Paolella S, FitzGerald RJ. Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Res Int 2017;94:79-89. [PMID: 28290371 DOI: 10.1016/j.foodres.2017.02.004] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 8.3] [Reference Citation Analysis]
103 Arpitha A, Sebastin Santhosh M, Rohit AC, Girish KS, Vinod D, Aparna HS. Inhibition of Snake Venom Metalloproteinase by β-Lactoglobulin Peptide from Buffalo (Bubalus bubalis) Colostrum. Appl Biochem Biotechnol 2017;182:1415-32. [PMID: 28155167 DOI: 10.1007/s12010-017-2407-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
104 Mann B, Athira S, Sharma R, Bajaj R. Bioactive Peptides in Yogurt. Yogurt in Health and Disease Prevention 2017. [DOI: 10.1016/b978-0-12-805134-4.00024-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
105 Ferreira-santos P, Carrón R, Recio I, Sevilla MÁ, Montero MJ. Effects of milk casein hydrolyzate supplemented with phytosterols on hypertension and lipid profile in hypercholesterolemic hypertensive rats. Journal of Functional Foods 2017;28:168-76. [DOI: 10.1016/j.jff.2016.11.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
106 Singh BP, Yadav D, Vij S. Soybean Bioactive Molecules: Current Trend and Future Prospective. Reference Series in Phytochemistry 2017. [DOI: 10.1007/978-3-319-54528-8_4-1] [Cited by in Crossref: 7] [Article Influence: 1.2] [Reference Citation Analysis]
107 Tonda A, Grosvenor A, Clerens S, Le Feunteun S. In silico modeling of protein hydrolysis by endoproteases: a case study on pepsin digestion of bovine lactoferrin. Food Funct 2017;8:4404-13. [DOI: 10.1039/c7fo00830a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
108 Gagnaire V, Jan G. Proteomics of Fermented Milk Products. Proteomics in Food Science 2017. [DOI: 10.1016/b978-0-12-804007-2.00022-9] [Reference Citation Analysis]
109 Mohammadian M, Salami M, Emam-djomeh Z, Alavi F. Nutraceutical Properties of Dairy Bioactive Peptides. Dairy in Human Health and Disease Across the Lifespan 2017. [DOI: 10.1016/b978-0-12-809868-4.00025-x] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
110 Sidhu JS, Zafar TA. Functional Foods of the Indian Subcontinent. Advances in Environmental Engineering and Green Technologies 2017. [DOI: 10.4018/978-1-5225-0591-4.ch016] [Reference Citation Analysis]
111 Pihlanto A, Mattila P, Mäkinen S, Pajari A. Bioactivities of alternative protein sources and their potential health benefits. Food Funct 2017;8:3443-58. [DOI: 10.1039/c7fo00302a] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 9.5] [Reference Citation Analysis]
112 Bessette C, Henry G, Sekkal S, Benoit B, Bruno J, Meugnier E, Ferrier L, Théodorou V, Léonil J, Plaisancié P. Oral administration of a casein matrix containing β-casofensin protects the intestinal barrier in two preclinical models of gut diseases. Journal of Functional Foods 2016;27:223-35. [DOI: 10.1016/j.jff.2016.09.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
113 Rutella GS, Solieri L, Martini S, Tagliazucchi D. Release of the Antihypertensive Tripeptides Valine-Proline-Proline and Isoleucine-Proline-Proline from Bovine Milk Caseins during in Vitro Gastrointestinal Digestion. J Agric Food Chem 2016;64:8509-15. [PMID: 27790911 DOI: 10.1021/acs.jafc.6b03271] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
114 Gómez-mascaraque LG, Miralles B, Recio I, López-rubio A. Microencapsulation of a whey protein hydrolysate within micro-hydrogels: Impact on gastrointestinal stability and potential for functional yoghurt development. Journal of Functional Foods 2016;26:290-300. [DOI: 10.1016/j.jff.2016.08.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
115 Rajarathnam E, Nongonierma AB, O'sullivan D, Flynn C, Fitzgerald RJ. Impact of enzyme preparation and degree of hydrolysis on peptide profile and nitrogen solubility of sodium caseinate hydrolysates. Int J Food Sci Technol 2016;51:2123-31. [DOI: 10.1111/ijfs.13191] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
116 Nongonierma AB, Maux SL, Esteveny C, Fitzgerald RJ. Response surface methodology applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase IV inhibitory properties: RSM applied to the generation of casein hydrolysates. J Sci Food Agric 2017;97:1093-101. [DOI: 10.1002/jsfa.7834] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
117 Lacou L, Léonil J, Gagnaire V. Functional properties of peptides: From single peptide solutions to a mixture of peptides in food products. Food Hydrocolloids 2016;57:187-99. [DOI: 10.1016/j.foodhyd.2016.01.028] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
118 Horner K, Drummond E, Brennan L. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective. Nutr Res Rev 2016;29:91-101. [DOI: 10.1017/s0954422416000032] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
119 Nongonierma AB, Fitzgerald RJ. Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology 2016;50:26-43. [DOI: 10.1016/j.tifs.2016.01.022] [Cited by in Crossref: 65] [Cited by in F6Publishing: 46] [Article Influence: 9.3] [Reference Citation Analysis]
120 Gu Y, Wu J. The potential of antioxidative and anti-inflammatory peptides in reducing the risk of cardiovascular diseases. Current Opinion in Food Science 2016;8:25-32. [DOI: 10.1016/j.cofs.2016.01.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
121 Nongonierma AB, Fitzgerald RJ. Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Current Opinion in Food Science 2016;8:19-24. [DOI: 10.1016/j.cofs.2016.01.007] [Cited by in Crossref: 53] [Cited by in F6Publishing: 35] [Article Influence: 7.6] [Reference Citation Analysis]
122 Farías M, Pilosof A. The influence of acid type on self-assembly, rheological and textural properties of caseinomacropeptide. International Dairy Journal 2016;55:17-25. [DOI: 10.1016/j.idairyj.2015.11.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
123 Nongonierma AB, FitzGerald RJ. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides 2016;79:1-7. [PMID: 26988873 DOI: 10.1016/j.peptides.2016.03.005] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 11.0] [Reference Citation Analysis]
124 Arroume N, Froidevaux R, Kapel R, Cudennec B, Ravallec R, Flahaut C, Bazinet L, Jacques P, Dhulster P. Food peptides: purification, identification and role in the metabolism. Current Opinion in Food Science 2016;7:101-7. [DOI: 10.1016/j.cofs.2016.02.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
125 Nongonierma AB, Fitzgerald RJ. Learnings from quantitative structure–activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: a review. RSC Adv 2016;6:75400-13. [DOI: 10.1039/c6ra12738j] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 9.0] [Reference Citation Analysis]
126 Rémond D, Savary-auzeloux I, Boutrou R. Bioactive Peptides Derived From Food Proteins. The Molecular Nutrition of Amino Acids and Proteins. Elsevier; 2016. pp. 3-11. [DOI: 10.1016/b978-0-12-802167-5.00001-3] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
127 Le Maux S, Nongonierma AB, Barre C, FitzGerald RJ. Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties. Food Chem 2016;199:246-51. [PMID: 26775967 DOI: 10.1016/j.foodchem.2015.12.021] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 8.3] [Reference Citation Analysis]
128 Nongonierma AB, FitzGerald RJ. Bioactive properties of milk proteins in humans: A review. Peptides 2015;73:20-34. [PMID: 26297879 DOI: 10.1016/j.peptides.2015.08.009] [Cited by in Crossref: 73] [Cited by in F6Publishing: 75] [Article Influence: 9.1] [Reference Citation Analysis]