BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wan Y, Zhang Z, Ding C, Wen L. Facile construction of bifunctional porous ionic polymers for efficient and metal-free catalytic conversion of CO2 into cyclic carbonates. Journal of CO2 Utilization 2021;52:101673. [DOI: 10.1016/j.jcou.2021.101673] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang Y, Guo Y, Gao C, North M, Yuan J, Xie H, Zheng Q. Fabrication of Carboxylic Acid and Imidazolium Ionic Liquid Functionalized Porous Cellulosic Materials for the Efficient Conversion of Carbon Dioxide into Cyclic Carbonates. ACS Sustainable Chem Eng 2023. [DOI: 10.1021/acssuschemeng.2c06976] [Reference Citation Analysis]
2 Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO(2) to Epoxides. J Org Chem 2023. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Reference Citation Analysis]
3 Wu Y, Ma L, Song Z, Dong S, Guo Z, Wang J, Zhou Y. Ordered mesoporous carbon encapsulated linear poly(ionic liquid)s enabling synergy effect of surface groups and ionic moieties for CO2 fixation under mild conditions. Carb Neutrality 2023;2:1. [DOI: 10.1007/s43979-022-00041-5] [Reference Citation Analysis]
4 Bao Y, Liu J, Zhang Y, Zheng L, Ma J, Zhang F, Xiong Y, Meng X, Dai Z, Xiao F. Porous organic polymers with diverse quaternary phosphonium units for chemical fixation of CO2 with low concentration. Fuel 2023;331:125909. [DOI: 10.1016/j.fuel.2022.125909] [Reference Citation Analysis]
5 Zhang Y, Liang H, Li X, Li Q, Wang J. Melem based mesoporous metal-free catalyst for cycloaddition of CO2 to cyclic carbonate. Journal of CO2 Utilization 2022;64:102173. [DOI: 10.1016/j.jcou.2022.102173] [Reference Citation Analysis]
6 Liu F, Duan X, Dai X, Du S, Ma J, Liu F, Liu M. Metal-decorated porous organic frameworks with cross-linked pyridyl and triazinyl as efficient platforms for CO2 activation and conversion under mild conditions. Chemical Engineering Journal 2022;445:136687. [DOI: 10.1016/j.cej.2022.136687] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 Peng J, Guo R, Shi X, Zhang P, Qiu F, Li W, Wei C, Miao S. Highly efficient and recyclable conversion of CO2 using supported metal-free ionic liquids on ball clay. Applied Clay Science 2022;228:106645. [DOI: 10.1016/j.clay.2022.106645] [Reference Citation Analysis]
8 Wan Y, Wang L, Wen L. Amide-functionalized organic cationic polymers toward enhanced catalytic performance for conversion of CO2 into cyclic carbonates. Journal of CO2 Utilization 2022;64:102174. [DOI: 10.1016/j.jcou.2022.102174] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Chen Y, Chen C, Li X, Feng N, Wang L, Wan H, Guan G. Hydroxyl-ionic liquid functionalized metalloporphyrin as an efficient heterogeneous catalyst for cooperative cycloaddition of CO2 with epoxides. Journal of CO2 Utilization 2022;62:102107. [DOI: 10.1016/j.jcou.2022.102107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yang Y, Guo Y, Yuan J, Xie H, Gao C, Zhao T, Zheng Q. Agile Construction of Porous Organic Frameworks Pending Carboxylic Acids and Imidazolium-Based Ionic Liquids for the Efficient Fixation of CO 2 to Cyclic Carbonates. ACS Sustainable Chem Eng 2022;10:7990-8001. [DOI: 10.1021/acssuschemeng.2c01660] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Guo L, Xiong Y, Zhang R, Zhan H, Chang D, Yi L, Chen J, Wu X. Catalytic coupling of CO2 and epoxides by lignin-based catalysts: A combined experimental and theoretical study. Journal of CO2 Utilization 2022;56:101863. [DOI: 10.1016/j.jcou.2021.101863] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]