BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hu C, Zhang F, Long L, Kong Q, Luo R, Wang Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. Journal of Controlled Release 2020;324:204-17. [DOI: 10.1016/j.jconrel.2020.05.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 54] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhou W, Duan Z, Zhao J, Fu R, Zhu C, Fan D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioactive Materials 2022;17:1-17. [DOI: 10.1016/j.bioactmat.2022.01.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Kumar A, Anuradha, Biswas A, Jewrajka SK. Injectable amphiphilic hydrogel systems from the self-assembly of partially alkylated poly(2-dimethyl aminoethyl) methacrylate with inherent antimicrobial property and sustained release behaviour. European Polymer Journal 2022;179:111559. [DOI: 10.1016/j.eurpolymj.2022.111559] [Reference Citation Analysis]
3 Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022;23:267. [PMID: 36163568 DOI: 10.1208/s12249-022-02419-1] [Reference Citation Analysis]
4 Joorabloo A, Liu T. Recent advances in nanomedicines for regulation of macrophages in wound healing. J Nanobiotechnology 2022;20:407. [PMID: 36085212 DOI: 10.1186/s12951-022-01616-1] [Reference Citation Analysis]
5 Zhao Y, Luo L, Huang L, Zhang Y, Tong M, Pan H, Shangguan J, Yao Q, Xu S, Xu H. In situ hydrogel capturing nitric oxide microbubbles accelerates the healing of diabetic foot. J Control Release 2022;350:93-106. [PMID: 35973472 DOI: 10.1016/j.jconrel.2022.08.018] [Reference Citation Analysis]
6 García-Torres J, Colombi S, Macor LP, Alemán C. Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022;219:312-32. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Reference Citation Analysis]
7 Zhang X, Sun Y, Yang R, Liu B, Liu Y, Yang J, Liu W. An injectable mitochondria-targeted nanodrug loaded-hydrogel for restoring mitochondrial function and hierarchically attenuating oxidative stress to reduce myocardial ischemia-reperfusion injury. Biomaterials 2022;287:121656. [DOI: 10.1016/j.biomaterials.2022.121656] [Reference Citation Analysis]
8 Long L, Hu C, Liu W, Wu C, Lu L, Yang L, Wang Y. Injectable multifunctional hyaluronic acid/methylcellulose hydrogels for chronic wounds repairing. Carbohydrate Polymers 2022;289:119456. [DOI: 10.1016/j.carbpol.2022.119456] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
9 Zeng N, He L, Jiang L, Shan S, Su H. Synthesis of magnetic/pH dual responsive dextran hydrogels as stimuli-sensitive drug carriers. Carbohydr Res 2022;520:108632. [PMID: 35839641 DOI: 10.1016/j.carres.2022.108632] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Long L, Liu W, Hu C, Yang L, Wang Y. Construction of multifunctional wound dressings with their application in chronic wound treatment. Biomater Sci 2022. [PMID: 35758152 DOI: 10.1039/d2bm00620k] [Reference Citation Analysis]
11 Lu H, Tu C, Zhou T, Zhang W, Zhan Y, Ding J, Wu X, Yang Z, Cao W, Deng L, Gao C, Xu F. A ROS-scavenging hydrogel loaded with bacterial quorum sensing inhibitor hyperbranched poly-L-lysine promotes the wound scar-free healing of infected skin in vivo. Chemical Engineering Journal 2022;436:135130. [DOI: 10.1016/j.cej.2022.135130] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Bako J, Toth F, Gall J, Kovacs R, Csík A, Varga I, Sculean A, Zelko R, Hegedus C. Combined Release of Antiseptic and Antibiotic Drugs from Visible Light Polymerized Biodegradable Nanocomposite Hydrogels for Periodontitis Treatment. Pharmaceutics 2022;14:957. [DOI: 10.3390/pharmaceutics14050957] [Reference Citation Analysis]
13 Alruwaili NK, Ahmad N, Alzarea AI, Alomar FA, Alquraini A, Akhtar S, Shahari MSB, Zafar A, Elmowafy M, Elkomy MH, Dolzhenko AV, Iqbal MS. Arabinoxylan-Carboxymethylcellulose Composite Films for Antibiotic Delivery to Infected Wounds. Polymers (Basel) 2022;14:1769. [PMID: 35566937 DOI: 10.3390/polym14091769] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Guo C, Wu Y, Li W, Wang Y, Kong Q. Development of a Microenvironment-Responsive Hydrogel Promoting Chronically Infected Diabetic Wound Healing through Sequential Hemostatic, Antibacterial, and Angiogenic Activities. ACS Appl Mater Interfaces 2022. [PMID: 35467827 DOI: 10.1021/acsami.2c02725] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Guo N, Xia Y, Zeng W, Chen J, Wu Q, Shi Y, Li G, Huang Z, Wang G, Liu Y. Alginate-based aerogels as wound dressings for efficient bacterial capture and enhanced antibacterial photodynamic therapy. Drug Deliv 2022;29:1086-99. [PMID: 35373683 DOI: 10.1080/10717544.2022.2058650] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Perrault DP, Sharma A, Kim JF, Gurtner GC, Wan DC. Surgical Applications of Materials Engineered with Antimicrobial Properties. Bioengineering 2022;9:138. [DOI: 10.3390/bioengineering9040138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. Materials (Basel) 2022;15:2388. [PMID: 35407720 DOI: 10.3390/ma15072388] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Almawash S, Osman SK, Mustafa G, El Hamd MA. Current and Future Prospective of Injectable Hydrogels—Design Challenges and Limitations. Pharmaceuticals 2022;15:371. [DOI: 10.3390/ph15030371] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
19 Zhang R, Yu B, Tian Y, Pang L, Xu T, Cong H, Shen Y. Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare. Applied Materials Today 2022;26:101396. [DOI: 10.1016/j.apmt.2022.101396] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Niu H, Li H, Guan Y, Zhou X, Li Z, Zhao SL, Chen P, Tan T, Zhu H, Bergdall V, Xu X, Ma J, Guan J. Sustained delivery of rhMG53 promotes diabetic wound healing and hair follicle development. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.03.017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Quek J, Uroro E, Goswami N, Vasilev K. Design principles for bacteria-responsive antimicrobial nanomaterials. Materials Today Chemistry 2022;23:100606. [DOI: 10.1016/j.mtchem.2021.100606] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
22 Xie J, Yu P, Wang Z, Li J. Recent Advances of Self-Healing Polymer Materials via Supramolecular Forces for Biomedical Applications. Biomacromolecules 2022. [PMID: 35199999 DOI: 10.1021/acs.biomac.1c01647] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Chen Y, Zhao Q, Han J, Lan X, Che J, Chen M, Liang X, Ma X. Dual Drug Loaded pH-sensitive Micelles for Efficient Bacterial Infection Treatment. Pharm Res. [DOI: 10.1007/s11095-022-03182-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Kim H, Joo Y, Kook YM, Tran NL, Kim SH, Lee K, Oh SJ. On-Demand Local Immunomodulation via Epigenetic Control of Macrophages Using an Inflammation-Responsive Hydrogel for Accelerated Wound Healing. ACS Appl Mater Interfaces 2022;14:4931-45. [PMID: 34989546 DOI: 10.1021/acsami.1c20394] [Reference Citation Analysis]
25 Long LY, Liu W, Li L, Hu C, He S, Lu L, Wang J, Yang L, Wang YB. Dissolving microneedle-encapsulated drug-loaded nanoparticles and recombinant humanized collagen type III for the treatment of chronic wound via anti-inflammation and enhanced cell proliferation and angiogenesis. Nanoscale 2022;14:1285-95. [PMID: 35006234 DOI: 10.1039/d1nr07708b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
26 Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022;180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
27 Long L, Hu C, Liu W, Wu C, Lu L, Yang L, Wang Y. Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112669] [Reference Citation Analysis]
28 Wang C, Shirzaei Sani E, Gao W. Wearable Bioelectronics for Chronic Wound Management. Adv Funct Materials 2022;32:2111022. [DOI: 10.1002/adfm.202111022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
29 Hu C, Liu W, Long L, Wang Z, Yuan Y, Zhang W, He S, Wang J, Yang L, Lu L, Wang Y. Microenvironment-responsive multifunctional hydrogels with spatiotemporal sequential release of tailored recombinant human collagen type III for the rapid repair of infected chronic diabetic wounds. J Mater Chem B 2021;9:9684-99. [PMID: 34821252 DOI: 10.1039/d1tb02170b] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
30 Ghandforoushan P, Golafshan N, Babu Kadumudi F, Castilho M, Dolatshahi-Pirouz A, Orive G. Injectable and adhesive hydrogels for dealing with wounds. Expert Opin Biol Ther 2021;:1-15. [PMID: 34793282 DOI: 10.1080/14712598.2022.2008353] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Xu Z, Deng B, Wang X, Yu J, Xu Z, Liu P, Liu C, Cai Y, Wang F, Zong R, Chen Z, Xing H, Chen G. Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds. J Nanobiotechnology 2021;19:404. [PMID: 34865643 DOI: 10.1186/s12951-021-01152-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022;9:198-220. [PMID: 34820566 DOI: 10.1016/j.bioactmat.2021.07.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
33 Wu Y, Wang Y, Long L, Hu C, Kong Q, Wang Y. A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. J Control Release 2021;341:147-65. [PMID: 34813880 DOI: 10.1016/j.jconrel.2021.11.027] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
34 Mohapatra S, Mirza MA, Hilles AR, Zakir F, Gomes AC, Ansari MJ, Iqbal Z, Mahmood S. Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels 2021;7:207. [PMID: 34842705 DOI: 10.3390/gels7040207] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
35 Battistella C, Liang Y, Gianneschi NC. Innovations in Disease State Responsive Soft Materials for Targeting Extracellular Stimuli Associated with Cancer, Cardiovascular Disease, Diabetes, and Beyond. Adv Mater 2021;33:e2007504. [PMID: 34145625 DOI: 10.1002/adma.202007504] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
36 Wang Z, Liu X, Duan Y, Huang Y. Nanoparticle-Hydrogel Systems Containing Platensimycin for Local Treatment of Methicillin-Resistant Staphylococcus aureus Infection. Mol Pharm 2021;18:4099-110. [PMID: 34554755 DOI: 10.1021/acs.molpharmaceut.1c00523] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Devi V K A, Shyam R, Palaniappan A, Jaiswal AK, Oh TH, Nathanael AJ. Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers (Basel) 2021;13:3782. [PMID: 34771338 DOI: 10.3390/polym13213782] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
38 Wu Y, Lu Y, Wu C, Chen J, Ning N, Yang Z, Guo Y, Zhang J, Hu X, Wang Y. Conductive dual hydrogen bonding hydrogels for the electrical stimulation of infected chronic wounds. J Mater Chem B 2021;9:8138-46. [PMID: 34495024 DOI: 10.1039/d1tb01432c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
39 Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
40 Zhuang P, Li K, Li D, Qiao H, E Y, Wang M, Sun J, Mei X, Li D. Assembly of Carbon Dots into Frameworks with Enhanced Stability and Antibacterial Activity. Nanoscale Res Lett 2021;16:121. [PMID: 34324080 DOI: 10.1186/s11671-021-03582-3] [Reference Citation Analysis]
41 Niazi M, Alizadeh E, Zarebkohan A, Seidi K, Ayoubi‐joshaghani MH, Azizi M, Dadashi H, Mahmudi H, Javaheri T, Jaymand M, Hamblin MR, Jahanban‐esfahlan R, Amoozgar Z. Advanced Bioresponsive Multitasking Hydrogels in the New Era of Biomedicine. Adv Funct Materials 2021;31:2104123. [DOI: 10.1002/adfm.202104123] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
42 Wang Y, Wu Y, Long L, Yang L, Fu D, Hu C, Kong Q, Wang Y. Inflammation-Responsive Drug-Loaded Hydrogels with Sequential Hemostasis, Antibacterial, and Anti-Inflammatory Behavior for Chronically Infected Diabetic Wound Treatment. ACS Appl Mater Interfaces 2021;13:33584-99. [PMID: 34240605 DOI: 10.1021/acsami.1c09889] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 34.0] [Reference Citation Analysis]
43 Niu Y, Xue Q, Fu Y. Natural Glycan Derived Biomaterials for Inflammation Targeted Drug Delivery. Macromol Biosci 2021;:e2100162. [PMID: 34145960 DOI: 10.1002/mabi.202100162] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Yang C, Chen Y, Huang H, Fan S, Yang C, Wang L, Li W, Niu W, Liao J. ROS-Eliminating Carboxymethyl Chitosan Hydrogel to Enhance Burn Wound-Healing Efficacy. Front Pharmacol 2021;12:679580. [PMID: 34194330 DOI: 10.3389/fphar.2021.679580] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
45 Zhang G, Ma L, Bai L, Li M, Guo T, Tian B, He Z, Fu Q. Inflammatory microenvironment-targeted nanotherapies. J Control Release 2021;334:114-26. [PMID: 33887284 DOI: 10.1016/j.jconrel.2021.04.018] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
46 Cao J, Wu X, Wang L, Shao G, Qin B, Wang Z, Wang T, Fu Y. A cellulose-based temperature sensitivity molecular imprinted hydrogel for specific recognition and enrichment of paclitaxel. Int J Biol Macromol 2021;181:1231-42. [PMID: 34022304 DOI: 10.1016/j.ijbiomac.2021.05.095] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
47 Hu C, Long L, Cao J, Zhang S, Wang Y. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chemical Engineering Journal 2021;411:128564. [DOI: 10.1016/j.cej.2021.128564] [Cited by in Crossref: 13] [Cited by in F6Publishing: 38] [Article Influence: 13.0] [Reference Citation Analysis]
48 Miller B, Hansrisuk A, Highley CB, Caliari SR. Guest-Host Supramolecular Assembly of Injectable Hydrogel Nanofibers for Cell Encapsulation. ACS Biomater Sci Eng 2021. [PMID: 33891397 DOI: 10.1021/acsbiomaterials.1c00275] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
49 Zhang J, Hu J, Chen B, Zhao T, Gu Z. Superabsorbent poly(acrylic acid) and antioxidant poly(ester amide) hybrid hydrogel for enhanced wound healing. Regen Biomater 2021;8:rbaa059. [PMID: 33927886 DOI: 10.1093/rb/rbaa059] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
50 Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. Nanomicro Lett 2021;13:88. [PMID: 34138348 DOI: 10.1007/s40820-021-00598-3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
51 Xu C, Guan S, Xu J, Gong W, Liu T, Ma X, Sun C. Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel. Carbohydrate Polymers 2021;252:117210. [DOI: 10.1016/j.carbpol.2020.117210] [Cited by in Crossref: 5] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
52 Wu Y, Li Q, Shim G, Oh YK. Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment. J Control Release 2021;330:540-53. [PMID: 33373649 DOI: 10.1016/j.jconrel.2020.12.040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
53 Long L, Zhang J, Yang Z, Guo Y, Hu X, Wang Y. Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages. Journal of Drug Delivery Science and Technology 2020;60:102007. [DOI: 10.1016/j.jddst.2020.102007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
54 Aeridou E, Díaz Díaz D, Alemán C, Pérez-madrigal MM. Advanced Functional Hydrogel Biomaterials Based on Dynamic B–O Bonds and Polysaccharide Building Blocks. Biomacromolecules 2020;21:3984-96. [DOI: 10.1021/acs.biomac.0c01139] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
55 Hu C, Luo R, Wang Y. Heart Valves Cross-Linked with Erythrocyte Membrane Drug-Loaded Nanoparticles as a Biomimetic Strategy for Anti-coagulation, Anti-inflammation, Anti-calcification, and Endothelialization. ACS Appl Mater Interfaces 2020;12:41113-26. [DOI: 10.1021/acsami.0c12688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]