BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Obuobi S, Tay HK, Tram NDT, Selvarajan V, Khara JS, Wang Y, Ee PLR. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. Journal of Controlled Release 2019;313:120-30. [DOI: 10.1016/j.jconrel.2019.10.013] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Aloke C, Achilonu I. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects. Microb Pathog 2022;175:105963. [PMID: 36584930 DOI: 10.1016/j.micpath.2022.105963] [Reference Citation Analysis]
2 Cao Z, Li K, Wang C, Liu J, Tang Y, Wang L. Historical Perspectives and Recent Research on DNA Hydrogel-Based Stimuli-Responsive Systems and Bioengineering Applications. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01528] [Reference Citation Analysis]
3 Wang Z, Chen R, Yang S, Li S, Gao Z. Design and application of stimuli-responsive DNA hydrogels: A review. Mater Today Bio 2022;16:100430. [PMID: 36157049 DOI: 10.1016/j.mtbio.2022.100430] [Reference Citation Analysis]
4 Xin Y, Sun Z, Liu J, Li W, Wang M, Chu Y, Sun Z, Deng G. Nanomaterial-mediated low-temperature photothermal therapy via heat shock protein inhibition. Front Bioeng Biotechnol 2022;10:1027468. [DOI: 10.3389/fbioe.2022.1027468] [Reference Citation Analysis]
5 Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS Appl Mater Interfaces 2022. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Reference Citation Analysis]
6 Bellotti D, Remelli M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022;27:4584. [DOI: 10.3390/molecules27144584] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
7 Wang Q, Qu Y, Zhang Z, Huang H, Xu Y, Shen F, Wang L, Sun L. Injectable DNA Hydrogel-Based Local Drug Delivery and Immunotherapy. Gels 2022;8:400. [DOI: 10.3390/gels8070400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Chakraborty B, Das S, Gupta A, Xiong Y, T-V V, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022;8:667-92. [PMID: 35220716 DOI: 10.1021/acsinfecdis.1c00546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Budharaju H, Zennifer A, Sethuraman S, Paul A, Sundaramurthi D. Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. Mater Horiz 2022;9:1141-66. [PMID: 35006214 DOI: 10.1039/d1mh01632f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Tseng CY, Wang WX, Douglas TR, Chou LYT. Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates. Adv Healthc Mater 2022;11:e2101844. [PMID: 34716686 DOI: 10.1002/adhm.202101844] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Bai Q, Zheng C, Chen W, Sun N, Gao Q, Liu J, Hu F, Pimpi S, Yan X, Zhang Y, Lu T. Current challenges and future applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Mater Adv 2022;3:6707-6727. [DOI: 10.1039/d2ma00695b] [Reference Citation Analysis]
12 Nayak S, Kumar P, Shankar R, Mukhopadhyay AK, Mandal D, Das P. Biomass derived self-assembled DNA-dot hydrogels for enhanced bacterial annihilation. Nanoscale 2022. [DOI: 10.1039/d2nr03810b] [Reference Citation Analysis]
13 Kalelkar PP, Riddick M, García AJ. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. Nat Rev Mater 2022;7:39-54. [PMID: 35330939 DOI: 10.1038/s41578-021-00362-4] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 57.0] [Reference Citation Analysis]
14 Günyaktı A, Demirtaş TT, Karakeçili A. Layered Fibrous Scaffolds/Membranes in Wound Healing. Advances in Polymer Science 2022. [DOI: 10.1007/12_2022_124] [Reference Citation Analysis]
15 Obuobi S, Ngoc Phung A, Julin K, Johannessen M, Škalko-Basnet N. Biofilm Responsive Zwitterionic Antimicrobial Nanoparticles to Treat Cutaneous Infection. Biomacromolecules 2021. [PMID: 34914360 DOI: 10.1021/acs.biomac.1c01274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
16 Drayton M, Deisinger JP, Ludwig KC, Raheem N, Müller A, Schneider T, Straus SK. Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int J Mol Sci 2021;22:11172. [PMID: 34681833 DOI: 10.3390/ijms222011172] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
17 Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Adv Mater 2021;33:e2100176. [PMID: 34251690 DOI: 10.1002/adma.202100176] [Cited by in Crossref: 55] [Cited by in F6Publishing: 61] [Article Influence: 27.5] [Reference Citation Analysis]
18 Cao F, Ma G, Mei L, Zhu G, Song M, Qin Q, Jiao M. Development of disulfide bond crosslinked antimicrobial peptide hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;626:127026. [DOI: 10.1016/j.colsurfa.2021.127026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics (Basel) 2021;10:1095. [PMID: 34572678 DOI: 10.3390/antibiotics10091095] [Cited by in Crossref: 26] [Cited by in F6Publishing: 33] [Article Influence: 13.0] [Reference Citation Analysis]
20 Song X, Liu P, Liu X, Wang Y, Wei H, Zhang J, Yu L, Yan X, He Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. Mater Sci Eng C Mater Biol Appl 2021;128:112318. [PMID: 34474869 DOI: 10.1016/j.msec.2021.112318] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
21 Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Front Microbiol 2021;12:710199. [PMID: 34475862 DOI: 10.3389/fmicb.2021.710199] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
22 Miao F, Li Y, Tai Z, Zhang Y, Gao Y, Hu M, Zhu Q. Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing. Macromol Biosci 2021;21:e2100103. [PMID: 34405955 DOI: 10.1002/mabi.202100103] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
23 Wei S, Xu P, Yao Z, Cui X, Lei X, Li L, Dong Y, Zhu W, Guo R, Cheng B. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater 2021;124:205-18. [PMID: 33524559 DOI: 10.1016/j.actbio.2021.01.046] [Cited by in Crossref: 49] [Cited by in F6Publishing: 57] [Article Influence: 24.5] [Reference Citation Analysis]
24 Pérez-pedroza R, Ávila-ramírez A, Khan Z, Moretti M, Hauser CAE, De Santiago GT. Supramolecular Biopolymers for Tissue Engineering. Advances in Polymer Technology 2021;2021:1-23. [DOI: 10.1155/2021/8815006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
25 Smith DM, Keller A. DNA Nanostructures in the Fight Against Infectious Diseases. Adv Nanobiomed Res 2021;:2000049. [PMID: 33615315 DOI: 10.1002/anbr.202000049] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
26 Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 2021;168:79-98. [PMID: 32712197 DOI: 10.1016/j.addr.2020.07.018] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 27.5] [Reference Citation Analysis]
27 Sun Q, Han Y, Yang Y, de la Fuente JM, Cui D, Wang X. Application of DNA nanostructures in cancer therapy. Applied Materials Today 2020;21:100861. [DOI: 10.1016/j.apmt.2020.100861] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
28 Nayak S, Prasad SR, Mandal D, Das P. Hybrid DNA-Carbon Dot-Poly(vinylpyrrolidone) Hydrogel with Self-Healing and Shape Memory Properties for Simultaneous Trackable Drug Delivery and Visible-Light-Induced Antimicrobial Photodynamic Inactivation. ACS Appl Bio Mater 2020;3:7865-75. [PMID: 35019527 DOI: 10.1021/acsabm.0c01022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
29 Lattuada E, Leo M, Caprara D, Salvatori L, Stoppacciaro A, Sciortino F, Filetici P. DNA-GEL, Novel Nanomaterial for Biomedical Applications and Delivery of Bioactive Molecules. Front Pharmacol 2020;11:01345. [PMID: 33013376 DOI: 10.3389/fphar.2020.01345] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
30 Obuobi S, Škalko-Basnet N. Nucleic Acid Hybrids as Advanced Antibacterial Nanocarriers. Pharmaceutics 2020;12:E643. [PMID: 32650506 DOI: 10.3390/pharmaceutics12070643] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
31 Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020;25:E3048. [PMID: 32635310 DOI: 10.3390/molecules25133048] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
32 Simonson AW, Aronson MR, Medina SH. Supramolecular Peptide Assemblies as Antimicrobial Scaffolds. Molecules 2020;25:E2751. [PMID: 32545885 DOI: 10.3390/molecules25122751] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
33 Obuobi S, Julin K, Fredheim EGA, Johannessen M, Škalko-Basnet N. Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. J Control Release 2020;324:620-32. [PMID: 32525012 DOI: 10.1016/j.jconrel.2020.06.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
34 Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020;19:311-32. [DOI: 10.1038/s41573-019-0058-8] [Cited by in Crossref: 411] [Cited by in F6Publishing: 425] [Article Influence: 137.0] [Reference Citation Analysis]
35 Thapa RK, Diep DB, Tønnesen HH. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater 2020;103:52-67. [PMID: 31874224 DOI: 10.1016/j.actbio.2019.12.025] [Cited by in Crossref: 122] [Cited by in F6Publishing: 130] [Article Influence: 40.7] [Reference Citation Analysis]
36 Obuobi S, Mayandi V, Nor NAM, Lee BJ, Lakshminarayanan R, Ee PLR. Nucleic acid peptide nanogels for the treatment of bacterial keratitis. Nanoscale 2020;12:17411-25. [DOI: 10.1039/d0nr03095c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]