BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J Control Release 2019;303:130-50. [PMID: 31022431 DOI: 10.1016/j.jconrel.2019.04.025] [Cited by in Crossref: 98] [Cited by in F6Publishing: 105] [Article Influence: 24.5] [Reference Citation Analysis]
Number Citing Articles
1 Karunakaran B, Gupta R, Patel P, Salave S, Sharma A, Desai D, Benival D, Kommineni N. Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines 2023;11:661. [DOI: 10.3390/vaccines11030661] [Reference Citation Analysis]
2 Saldanha L, Langel Ü, Vale N. In Silico Studies to Support Vaccine Development. Pharmaceutics 2023;15. [PMID: 36839975 DOI: 10.3390/pharmaceutics15020654] [Reference Citation Analysis]
3 Huang H, Yi X, Wei Q, Li M, Cai X, Lv Y, Weng L, Mao Y, Fan W, Zhao M, Weng Z, Zhao Q, Zhao K, Cao M, Chen J, Cao P. Edible and cation-free kiwi fruit derived vesicles mediated EGFR-targeted siRNA delivery to inhibit multidrug resistant lung cancer. J Nanobiotechnology 2023;21:41. [PMID: 36740689 DOI: 10.1186/s12951-023-01766-w] [Reference Citation Analysis]
4 Hu VT, Kamat NP. Cell-free protein synthesis systems for vaccine design and production. Curr Opin Biotechnol 2023;79:102888. [PMID: 36641905 DOI: 10.1016/j.copbio.2022.102888] [Reference Citation Analysis]
5 Xu F, Yuan Y, Wang Y, Yin Q. Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed Pharmacother 2023;158:114117. [PMID: 36528914 DOI: 10.1016/j.biopha.2022.114117] [Reference Citation Analysis]
6 Wan J, Yang J, Lei W, Xiao Z, Zhou P, Zheng S, Zhu P. Anti-Oxidative, Anti-Apoptotic, and M2 Polarized DSPC Liposome Nanoparticles for Selective Treatment of Atherosclerosis. Int J Nanomedicine 2023;18:579-94. [PMID: 36756051 DOI: 10.2147/IJN.S384675] [Reference Citation Analysis]
7 Iacomino G. miRNAs: The Road from Bench to Bedside. Genes (Basel) 2023;14. [PMID: 36833241 DOI: 10.3390/genes14020314] [Reference Citation Analysis]
8 Langer D, Mlynarczyk DT, Dlugaszewska J, Tykarska E. Potential of glycyrrhizic and glycyrrhetinic acids against influenza type A and B viruses: A perspective to develop new anti-influenza compounds and drug delivery systems. Eur J Med Chem 2023;246:114934. [PMID: 36455358 DOI: 10.1016/j.ejmech.2022.114934] [Reference Citation Analysis]
9 Soleimanjahi H, Seyed-khorrami S. The Function of DNA and RNA Nanovaccines in the Treatment of Cancer. Cancer Nanotechnology 2023. [DOI: 10.1007/978-3-031-17831-3_8] [Reference Citation Analysis]
10 Carnet F, Perrin-Cocon L, Paillot R, Lotteau V, Pronost S, Vidalain PO. An inventory of adjuvants used for vaccination in horses: the past, the present and the future. Vet Res 2023;54:18. [PMID: 36864517 DOI: 10.1186/s13567-023-01151-3] [Reference Citation Analysis]
11 Dahiya S, Dahiya R. An Overview on Nanocarriers for Nasal Delivery. Nasal Drug Delivery 2023. [DOI: 10.1007/978-3-031-23112-4_9] [Reference Citation Analysis]
12 Sadeghi M, Asadirad A, Koushki K, Keshavarz Shahbaz S, Dehnavi S. Recent advances in improving intranasal allergen-specific immunotherapy; focus on delivery systems and adjuvants. International Immunopharmacology 2022;113:109327. [DOI: 10.1016/j.intimp.2022.109327] [Reference Citation Analysis]
13 de Moura IA, Silva AJD, de Macêdo LS, Invenção MDCV, de Sousa MMG, de Freitas AC. Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens 2022;11. [PMID: 36558778 DOI: 10.3390/pathogens11121444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines 2022;10:1946. [DOI: 10.3390/vaccines10111946] [Reference Citation Analysis]
15 Khan MA, Allemailem KS, Maswadeh H, Younus H. Glycosphingolipids (GSLs) from Sphingomonas paucimobilis Increase the Efficacy of Liposome-Based Nanovaccine against Acinetobacter baumannii-Associated Pneumonia in Immunocompetent and Immunocompromised Mice. Molecules 2022;27. [PMID: 36431892 DOI: 10.3390/molecules27227790] [Reference Citation Analysis]
16 Zhang D, Liu P, Qin X, Cheng L, Wang F, Xiong X, Huang C, Zhang Z. HSA-templated self-generation of gold nanoparticles for tumor vaccine delivery and combinational therapy. J Mater Chem B 2022;10:8750-9. [PMID: 36254821 DOI: 10.1039/d2tb01483a] [Reference Citation Analysis]
17 Xing R, Song X, Liu L, Wang Y, Zhang Y, Peng S, Jia R, Zhao X, Zou Y, Li L, Wan H, Zhou X, Shi F, Ye G, Yin Z. Quaternized chitosan-coated liposomes enhance immune responses by co-delivery of antigens and resveratrol. International Journal of Pharmaceutics 2022;628:122277. [DOI: 10.1016/j.ijpharm.2022.122277] [Reference Citation Analysis]
18 Chakrabarti C, Khan Pathan S, Deep Punetha V, Pillai SA. Interaction of Tetronics® micelles with stimuli and additives and a commanding aspect towards drug delivery: An overview. Journal of Molecular Liquids 2022;366:120289. [DOI: 10.1016/j.molliq.2022.120289] [Reference Citation Analysis]
19 Zhao F, Sharma G, Kim J. Temperature and oxidation-sensitive dioleoylphophatidylethanolamine liposome stabilized with poly(ethyleneimine)/(phenylthio)acetic acid ion pair. Journal of Biomaterials Science, Polymer Edition 2022. [DOI: 10.1080/09205063.2022.2138693] [Reference Citation Analysis]
20 Teng Z, Meng LY, Yang JK, He Z, Chen XG, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J Control Release 2022;351:456-75. [PMID: 36174803 DOI: 10.1016/j.jconrel.2022.09.044] [Reference Citation Analysis]
21 Warner JB, Guenthner SC, Hardesty JE, McClain CJ, Warner DR, Kirpich IA. Liver-specific drug delivery platforms: Applications for the treatment of alcohol-associated liver disease. World J Gastroenterol 2022; 28(36): 5280-5299 [DOI: 10.3748/wjg.v28.i36.5280] [Reference Citation Analysis]
22 Bao J, Tu H, Li J, Li Y, Yu S, Gao J, Lei K, Zhang F, Li J. Applications of phase change materials in smart drug delivery for cancer treatment. Front Bioeng Biotechnol 2022;10:991005. [DOI: 10.3389/fbioe.2022.991005] [Reference Citation Analysis]
23 Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. Journal of Drug Delivery Science and Technology 2022;74:103533. [DOI: 10.1016/j.jddst.2022.103533] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Kanjanawasee D, Tantilipikorn P. LNIT-Local nasal immunotherapy in allergic rhinitis: revisited evidence and perspectives. Current Opinion in Allergy & Clinical Immunology 2022;22:259-267. [DOI: 10.1097/aci.0000000000000830] [Reference Citation Analysis]
25 Dong Z, Yin Y, Luo J, Li B, Lou F, Wang Q, Zhou Q, Ye B, Wang Y. An FGFR1-Binding Peptide Modified Liposome for siRNA Delivery in Lung Cancer. IJMS 2022;23:8380. [DOI: 10.3390/ijms23158380] [Reference Citation Analysis]
26 Azuar A, Madge HYR, Boer JC, Gonzalez Cruz JL, Wang J, Khalil ZG, Deceneux C, Goodchild G, Yang J, Koirala P, Hussein WM, Capon RJ, Plebanski M, Toth I, Skwarczynski M. Poly(hydrophobic Amino Acids) and Liposomes for Delivery of Vaccine against Group A Streptococcus. Vaccines (Basel) 2022;10:1212. [PMID: 36016100 DOI: 10.3390/vaccines10081212] [Reference Citation Analysis]
27 Ahmad MZ, Alasiri AS, Alasmary MY, Abdullah MM, Ahmad J, Abdel Wahab BA, M Alqahtani SA, Pathak K, Mustafa G, Khan MA, Saikia R, Gogoi U. Emerging advances in nanomedicine for breast cancer immunotherapy: opportunities and challenges. Immunotherapy 2022. [PMID: 35852105 DOI: 10.2217/imt-2021-0348] [Reference Citation Analysis]
28 Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022;9:925773. [DOI: 10.3389/fvets.2022.925773] [Reference Citation Analysis]
29 Shimon MB, Shapira S, Seni J, Arber N. The Big Potential of Small Particles: Lipid-Based Nanoparticles and Exosomes in Vaccination. Vaccines 2022;10:1119. [DOI: 10.3390/vaccines10071119] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022;12:925379. [DOI: 10.3389/fonc.2022.925379] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zhao F, Kim J. Thermo-sensitive self-assembly of poly(ethylene imine)/(phenylthio) acetic acid ion pair in surfactant solutions. Drug Delivery 2022;29:2245-57. [DOI: 10.1080/10717544.2022.2027571] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Chong PL, Chang A, Yu A, Mammedova A. Vesicular and Planar Membranes of Archaea Lipids: Unusual Physical Properties and Biomedical Applications. Int J Mol Sci 2022;23:7616. [PMID: 35886964 DOI: 10.3390/ijms23147616] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Aqib AI, Zaheer T, Usman M, Arslan M, Atta K. Commercialization of Nanovaccines: Utopia or a Reality? Nanovaccinology as Targeted Therapeutics 2022. [DOI: 10.1002/9781119858041.ch17] [Reference Citation Analysis]
34 Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022;:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Reference Citation Analysis]
35 Harris BS, Huang Y, Karsai A, Su WC, Sambre PD, Parikh AN, Liu GY, Faller R. Impact of Surface Polarity on Lipid Assembly under Spatial Confinement. Langmuir 2022. [PMID: 35671406 DOI: 10.1021/acs.langmuir.2c00636] [Reference Citation Analysis]
36 Taleb M, Mohammadkhani N, Bahreini F, Ovais M, Nie G. Modulation of Tumor Vasculature Network: Key Strategies. Small Structures. [DOI: 10.1002/sstr.202100164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Veeren A, Ogunyankin MO, Shin JE, Zasadzinski JA. Liposome-Tethered Gold Nanoparticles Triggered by Pulsed NIR Light for Rapid Liposome Contents Release and Endosome Escape. Pharmaceutics 2022;14:701. [DOI: 10.3390/pharmaceutics14040701] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
38 Aibani N, Patel P, Buchanan R, Strom S, Wasan KM, Hancock REW, Gerdts V, Wasan EK. Assessing the In Vivo Effectiveness of Cationic Lipid Nanoparticles with a Triple Adjuvant for Intranasal Vaccination against the Respiratory Pathogen Bordetella pertussis. Mol Pharm 2022. [PMID: 35302764 DOI: 10.1021/acs.molpharmaceut.1c00852] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Osi B, Khoder M, Al-Kinani AA, Alany RG. Pharmaceutical, Biomedical and Ophthalmic Applications of Biodegradable Polymers (BDPs): Literature and Patent Review. Pharm Dev Technol 2022;:1-47. [PMID: 35297285 DOI: 10.1080/10837450.2022.2055063] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Enterina JR, Sarkar S, Streith L, Jung J, Arlian BM, Meyer SJ, Takematsu H, Xiao C, Baldwin TA, Nitschke L, Shlomchick MJ, Paulson JC, Macauley MS. Coordinated changes in glycosylation regulate the germinal center through CD22. Cell Rep 2022;38:110512. [PMID: 35294874 DOI: 10.1016/j.celrep.2022.110512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Espinar-Buitrago M, Muñoz-Fernández MA. New Approaches to Dendritic Cell-Based Therapeutic Vaccines Against HIV-1 Infection. Front Immunol 2021;12:719664. [PMID: 35058917 DOI: 10.3389/fimmu.2021.719664] [Reference Citation Analysis]
42 Tretiakova DS, Vodovozova EL. Liposomes as Adjuvants and Vaccine Delivery Systems. Biochem (Mosc) Suppl Ser A Membr Cell Biol 2022;16:1-20. [PMID: 35194485 DOI: 10.1134/S1990747822020076] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
43 Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022;27:1372. [PMID: 35209162 DOI: 10.3390/molecules27041372] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
44 Alphandéry E. Nano dimensions/adjuvants in COVID-19 vaccines. J Mater Chem B 2022. [PMID: 35166754 DOI: 10.1039/d1tb02408f] [Reference Citation Analysis]
45 He X, Yang J, Ji M, Chen Y, Chen Y, Li H, Wang H. A potential delivery system based on cholera toxin: A macromolecule carrier with multiple activities. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.050] [Reference Citation Analysis]
46 Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022;13:830497. [DOI: 10.3389/fimmu.2022.830497] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
47 Andra VVSNL, Bhatraju LVKP, Ruddaraju LK. A Comprehensive Review on Novel Liposomal Methodologies, Commercial Formulations, Clinical Trials and Patents. BioNanoSci . [DOI: 10.1007/s12668-022-00941-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
48 Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. Methods Mol Biol 2022;2412:145-78. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
49 Bhattacharjee S, Mandal DP, Adhikary A. Nanotechnology: Scopes and various aspects of drug delivery. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00001-6] [Reference Citation Analysis]
50 Vigneshkumar P, George E, Joseph J, John F, George J. Liposomal bionanomaterials for nucleic acid delivery. Fundamentals of Bionanomaterials 2022. [DOI: 10.1016/b978-0-12-824147-9.00012-1] [Reference Citation Analysis]
51 Rosales-mendoza S, Wong-arce A, de Lourdes Betancourt-mendiola M. RNA-based vaccines against SARS-CoV-2. Biomedical Innovations to Combat COVID-19 2022. [DOI: 10.1016/b978-0-323-90248-9.00014-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Mohamed N, Hamad MA, Ghaleb AH, Esmat G, Elsabahy M. Applications of nanoengineered therapeutics and vaccines: special emphasis on COVID-19. Immunomodulatory Effects of Nanomaterials 2022. [DOI: 10.1016/b978-0-323-90604-3.00003-6] [Reference Citation Analysis]
53 Chavarria V, Figueroa R, Salazar A, Pérez de la Cruz V, Pineda B. Cancer vaccine’s multiverse and the future ahead. System Vaccinology 2022. [DOI: 10.1016/b978-0-323-85941-7.00010-3] [Reference Citation Analysis]
54 Khan S, Belgamwar A, Yeole P. Nanovaccines against viral infections: Current trends and future prospects. Nanotechnological Applications in Virology 2022. [DOI: 10.1016/b978-0-323-99596-2.00014-5] [Reference Citation Analysis]
55 Liu J, Zhao R, Jiang X, Li Z, Zhang B. Progress on the Application of Bortezomib and Bortezomib-Based Nanoformulations. Biomolecules 2022;12:51. [DOI: 10.3390/biom12010051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Acebedo SL, Ramírez JA. Steroids. Kirk‐Othmer Encyclopedia of Chemical Technology 2021. [DOI: 10.1002/0471238961.1920051813151807.a01.pub2] [Reference Citation Analysis]
57 Chatterjee SK, Saha S, Munoz MNM. Activation of mucosal immunity and novel prophylactic and therapeutic strategy in combating COVID-19. Explor Immunol 2021. [DOI: 10.37349/ei.2021.00025] [Reference Citation Analysis]
58 Du X, Tan D, Gong Y, Zhang Y, Han J, Lv W, Xie T, He P, Hou Z, Xu K, Tan J, Zhu B. A new poly(I:C)-decorated PLGA-PEG nanoparticle promotes Mycobacterium tuberculosis fusion protein to induce comprehensive immune responses in mice intranasally. Microb Pathog 2021;162:105335. [PMID: 34861347 DOI: 10.1016/j.micpath.2021.105335] [Reference Citation Analysis]
59 Li Q, Liu Z, Liu Y, Liang C, Shu J, Jin X, Li C, Kou Z. A Combined Adjuvant TF-Al Consisting of TFPR1 and Aluminum Hydroxide Augments Strong Humoral and Cellular Immune Responses in Both C57BL/6 and BALB/c Mice. Vaccines (Basel) 2021;9:1408. [PMID: 34960154 DOI: 10.3390/vaccines9121408] [Reference Citation Analysis]
60 Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021;14:1173. [PMID: 34832955 DOI: 10.3390/ph14111173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
61 Hwang SR, Chakraborty K, An JM, Mondal J, Yoon HY, Lee YK. Pharmaceutical Aspects of Nanocarriers for Smart Anticancer Therapy. Pharmaceutics 2021;13:1875. [PMID: 34834290 DOI: 10.3390/pharmaceutics13111875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
62 Koo BI, Jin SM, Kim H, Lee DJ, Lee E, Nam YS. Conjugation-Free Multilamellar Protein-Lipid Hybrid Vesicles for Multifaceted Immune Responses. Adv Healthc Mater 2021;10:e2101239. [PMID: 34467659 DOI: 10.1002/adhm.202101239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert Rev Vaccines 2021;:1-12. [PMID: 34582298 DOI: 10.1080/14760584.2021.1987223] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
64 Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021;608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
65 Das A, Ali N. Nanovaccine: an emerging strategy. Expert Rev Vaccines 2021;20:1273-90. [PMID: 34550859 DOI: 10.1080/14760584.2021.1984890] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
66 Qi Y, Wang C, Qian R, Chen M, Jiang P, Wang T, Wang N. Loading drugs into liposomes by temperature up-down cycle procedure with controllable results fitting prediction by mathematical and thermodynamic process. Mater Sci Eng C Mater Biol Appl 2021;129:112379. [PMID: 34579898 DOI: 10.1016/j.msec.2021.112379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Christodoulides M, Humbert MV, Heckels JE. The potential utility of liposomes for Neisseria vaccines. Expert Rev Vaccines 2021;20:1235-56. [PMID: 34524062 DOI: 10.1080/14760584.2021.1981865] [Reference Citation Analysis]
68 Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021;13:1833. [PMID: 34578415 DOI: 10.3390/v13091833] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
69 Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021;9:988. [PMID: 34579225 DOI: 10.3390/vaccines9090988] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
70 Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021;176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
71 Feng H, Yang X, Fan J, Zhang L, Liu Q, Chai D. DEC-205 receptor-mediated long-circling nanoliposome as an antigen and Eucommia ulmoides polysaccharide delivery system enhances the immune response via facilitating dendritic cells maturation. Drug Deliv 2020;27:1581-96. [PMID: 33169636 DOI: 10.1080/10717544.2020.1844343] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
72 Luo F, Zeng D, Chen R, Zafar A, Weng L, Wang W, Tian Y, Hasan M, Shu X. PEGylated dihydromyricetin-loaded nanoliposomes coated with tea saponin inhibit bacterial oxidative respiration and energy metabolism. Food Funct 2021. [PMID: 34382988 DOI: 10.1039/d1fo01943k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
73 Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021;20:327. [PMID: 34315484 DOI: 10.1186/s12936-021-03858-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
74 Kaur R, Gorki V, Katare OP, Dhingra N, Chauhan M, Kaur R, Nirmalan N, Singh B. Improved biopharmaceutical attributes of lumefantrine using choline mimicking drug delivery system: preclinical investigation on NK-65 P.berghei murine model. Expert Opin Drug Deliv 2021;:1-20. [PMID: 34176411 DOI: 10.1080/17425247.2021.1946512] [Reference Citation Analysis]
75 Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021;18:2867-88. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
76 Astray Dopazo G, Martínez-castillo C, Alonso-ferrer M, Carlos Mejuto J. Modeling the Behavior of Amphiphilic Aqueous Solutions. Deep Learning Applications 2021. [DOI: 10.5772/intechopen.95613] [Reference Citation Analysis]
77 ur Rehman J, Ali I, Saifullah S, Ullah S, Imran M, Shah MR. Synthesis of quercetin based self-assembling supramolecular amphiphiles for amphotericin B delivery. Journal of Molecular Liquids 2021;333:115941. [DOI: 10.1016/j.molliq.2021.115941] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021;22:6937. [PMID: 34203268 DOI: 10.3390/ijms22136937] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
79 Luzuriaga MA, Shahrivarkevishahi A, Herbert FC, Wijesundara YH, Gassensmith JJ. Biomaterials and nanomaterials for sustained release vaccine delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1735. [PMID: 34180608 DOI: 10.1002/wnan.1735] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
80 Enterina JR, Sarkar S, Streith L, Jung J, Arlian BM, Meyer SJ, Takematsu H, Xiao C, Baldwin TA, Nitschke L, Shlomchick MJ, Paulson JC, Macauley MS. Coordinated changes in glycosylation regulate the germinal centre through CD22.. [DOI: 10.1101/2021.04.30.442136] [Reference Citation Analysis]
81 Guo Z, Kubiatowicz LJ, Fang RH, Zhang L. Nanotoxoids: Biomimetic Nanoparticle Vaccines against Infections. Adv Therap 2021;4:2100072. [DOI: 10.1002/adtp.202100072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
82 Asadi K, Gholami A. Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: A review. Int J Biol Macromol 2021;182:648-58. [PMID: 33862071 DOI: 10.1016/j.ijbiomac.2021.04.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
83 Qu Y, Shi H, Liu M, Zhang M, Wang H, Pang L, Zhang C, Kong D, Li C. In Vivo Insulin Peptide Autoantigen Delivery by Mannosylated Sodium Alginate Nanoparticles Delayed but Could Not Prevent the Onset of Type 1 Diabetes in Nonobese Diabetic Mice. Mol Pharm 2021;18:1806-18. [PMID: 33734705 DOI: 10.1021/acs.molpharmaceut.1c00054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Wui SR, Ko A, Ryu JI, Sim E, Lim SJ, Park SA, Kim KS, Kim H, Youn H, Lee NG. The Effect of a TLR4 Agonist/Cationic Liposome Adjuvant on Varicella-Zoster Virus Glycoprotein E Vaccine Efficacy: Antigen Presentation, Uptake, and Delivery to Lymph Nodes. Pharmaceutics 2021;13:390. [PMID: 33804176 DOI: 10.3390/pharmaceutics13030390] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
85 Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021;170:142-99. [PMID: 33428994 DOI: 10.1016/j.addr.2021.01.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 14.0] [Reference Citation Analysis]
86 Ahmad MZ, Ahmad J, Alasmary MY, Abdel-Wahab BA, Warsi MH, Haque A, Chaubey P. Emerging advances in cationic liposomal cancer nanovaccines: opportunities and challenges. Immunotherapy 2021;13:491-507. [PMID: 33626936 DOI: 10.2217/imt-2020-0258] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
87 Weber F, Ivan DC, Proulx ST, Locatelli G, Aleandri S, Luciani P. Beyond Trial and Error: A Systematic Development of Liposomes Targeting Primary Macrophages. Adv NanoBio Res 2021;1:2000098. [DOI: 10.1002/anbr.202000098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
88 Kim EM, Jeong HJ. Liposomes: Biomedical Applications. Chonnam Med J 2021;57:27-35. [PMID: 33537216 DOI: 10.4068/cmj.2021.57.1.27] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
89 Emir Diltemiz S, Tavafoghi M, de Barros NR, Kanada M, Heinämäki J, Contag C, Seidlits SK, Ashammakhi N. Use of artificial cells as drug carriers. Mater Chem Front 2021;5:6672-92. [DOI: 10.1039/d1qm00717c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
90 Rao M, Peachman KK, Alving CR. Liposome Formulations as Adjuvants for Vaccines. Curr Top Microbiol Immunol 2021;433:1-28. [PMID: 33165871 DOI: 10.1007/82_2020_227] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
91 Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Review of Vaccines 2020;19:1053-71. [DOI: 10.1080/14760584.2020.1858058] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
92 Huang Y, Nan L, Xiao C, Su F, Li K, Ji QA, Wei Q, Liu Y, Bao G. PEGylated nano-Rehmannia glutinosa polysaccharide induces potent adaptive immunity against Bordetella bronchiseptica. Int J Biol Macromol 2021;168:507-17. [PMID: 33310103 DOI: 10.1016/j.ijbiomac.2020.12.044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
93 Araújo MV, Santos Júnior SRD, Nosanchuk JD, Taborda CP. Therapeutic Vaccination with Cationic Liposomes Formulated with Dioctadecyldimethylammonium and Trehalose Dibehenate (CAF01) and Peptide P10 Is Protective in Mice Infected with Paracoccidioides brasiliensis. J Fungi (Basel) 2020;6:E347. [PMID: 33302372 DOI: 10.3390/jof6040347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
94 O'Hagan DT, Lodaya RN, Lofano G. The continued advance of vaccine adjuvants - 'we can work it out'. Semin Immunol 2020;50:101426. [PMID: 33257234 DOI: 10.1016/j.smim.2020.101426] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
95 Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020;7:604770. [PMID: 33330633 DOI: 10.3389/fmolb.2020.604770] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
96 Anderluzzi G, Schmidt ST, Cunliffe R, Woods S, Roberts CW, Veggi D, Ferlenghi I, O'Hagan DT, Baudner BC, Perrie Y. Rational design of adjuvants for subunit vaccines: The format of cationic adjuvants affects the induction of antigen-specific antibody responses. J Control Release 2021;330:933-44. [PMID: 33152394 DOI: 10.1016/j.jconrel.2020.10.066] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
97 Yang H, Le QV, Shim G, Oh YK, Shin YK. Molecular engineering of antibodies for site-specific conjugation to lipid polydopamine hybrid nanoparticles. Acta Pharm Sin B 2020;10:2212-26. [PMID: 33304787 DOI: 10.1016/j.apsb.2020.07.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
98 Liu Z, Huang L, Xue W. pH-responsive vaccine delivery systems for improving cellular immunity. Progress in Natural Science: Materials International 2020;30:609-17. [DOI: 10.1016/j.pnsc.2020.07.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
99 Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and Vaccine Development. Pharm Nanotechnol 2020;8:6-21. [PMID: 31647394 DOI: 10.2174/2211738507666191024162042] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 16.7] [Reference Citation Analysis]
100 Cheng R, Fontana F, Xiao J, Liu Z, Figueiredo P, Shahbazi MA, Wang S, Jin J, Torrieri G, Hirvonen JT, Zhang H, Chen T, Cui W, Lu Y, Santos HA. Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Appl Mater Interfaces 2020;12:44554-62. [PMID: 32960566 DOI: 10.1021/acsami.0c15057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
101 Leggio L, Arrabito G, Ferrara V, Vivarelli S, Paternò G, Marchetti B, Pignataro B, Iraci N. Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Adv Healthc Mater 2020;9:e2000731. [PMID: 32864899 DOI: 10.1002/adhm.202000731] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
102 Cao W, He L, Cao W, Huang X, Jia K, Dai J. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater 2020;112:14-28. [PMID: 32531395 DOI: 10.1016/j.actbio.2020.06.009] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
103 Patel BK, Wang C, Lorens B, Levine AD, Steinmetz NF, Shukla S. Cowpea Mosaic Virus (CPMV)-Based Cancer Testis Antigen NY-ESO-1 Vaccine Elicits an Antigen-Specific Cytotoxic T Cell Response. ACS Appl Bio Mater 2020;3:4179-87. [PMID: 34368641 DOI: 10.1021/acsabm.0c00259] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
104 Wang N, Wei C, Zhang Z, Liu T, Wang T. Aluminum Nanoparticles Acting as a Pulmonary Vaccine Adjuvant-Delivery System (VADS) Able to Safely Elicit Robust Systemic and Mucosal Immunity. J Inorg Organomet Polym Mater 2020;:1-15. [PMID: 32395098 DOI: 10.1007/s10904-020-01572-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
105 Zhao L, Jin W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I. Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. Nanomaterials (Basel) 2020;10:E823. [PMID: 32357402 DOI: 10.3390/nano10050823] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
106 Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines 2020;19:279-92. [PMID: 32228108 DOI: 10.1080/14760584.2020.1745636] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 11.3] [Reference Citation Analysis]
107 Kiaie SH, Mojarad-Jabali S, Khaleseh F, Allahyari S, Taheri E, Zakeri-Milani P, Valizadeh H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int J Pharm 2020;581:119269. [PMID: 32234427 DOI: 10.1016/j.ijpharm.2020.119269] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
108 Crommelin DJ, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? Journal of Controlled Release 2020;318:256-63. [DOI: 10.1016/j.jconrel.2019.12.023] [Cited by in Crossref: 132] [Cited by in F6Publishing: 139] [Article Influence: 44.0] [Reference Citation Analysis]
109 Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci 2020;21:E487. [PMID: 31940963 DOI: 10.3390/ijms21020487] [Cited by in Crossref: 197] [Cited by in F6Publishing: 211] [Article Influence: 65.7] [Reference Citation Analysis]
110 Suleiman E, Damm D, Batzoni M, Temchura V, Wagner A, Überla K, Vorauer-Uhl K. Electrostatically Driven Encapsulation of Hydrophilic, Non-Conformational Peptide Epitopes into Liposomes. Pharmaceutics 2019;11:E619. [PMID: 31752070 DOI: 10.3390/pharmaceutics11110619] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
111 Freitas MS, Bonato VLD, Pessoni AM, Rodrigues ML, Casadevall A, Almeida F. Fungal Extracellular Vesicles as Potential Targets for Immune Interventions. mSphere 2019;4:e00747-19. [PMID: 31694899 DOI: 10.1128/mSphere.00747-19] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
112 Stewart E, Triccas JA, Petrovsky N. Adjuvant Strategies for More Effective Tuberculosis Vaccine Immunity. Microorganisms 2019;7:E255. [PMID: 31409028 DOI: 10.3390/microorganisms7080255] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
113 Wang N, Qiu C, Chen M, Liu T, Wang T. Covering Aluminum Oxide Nanoparticles with Biocompatible Materials to Efficiently Deliver Subunit Vaccines. Vaccines (Basel) 2019;7:E52. [PMID: 31212955 DOI: 10.3390/vaccines7020052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
114 Rosales-mendoza S, González-ortega O. Liposome-Based Nanovaccines. Nanovaccines 2019. [DOI: 10.1007/978-3-030-31668-6_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]