BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, Verreck G, Csontos I, Nagy ZK, Marosi G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019;296:162-78. [PMID: 30677436 DOI: 10.1016/j.jconrel.2019.01.023] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Pardeshi S, More M, Patil P, Pardeshi C, Deshmukh P, Mujumdar A, Naik J. A meticulous overview on drying-based (spray-, freeze-, and spray-freeze) particle engineering approaches for pharmaceutical technologies. Drying Technology 2021;39:1447-91. [DOI: 10.1080/07373937.2021.1893330] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Bai Y, Wang D, Zhang Z, Pan J, Cui Z, Yu D, Annie Bligh S. Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites. Polymer Testing 2021;93:106872. [DOI: 10.1016/j.polymertesting.2020.106872] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 16.0] [Reference Citation Analysis]
3 Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021;174:140-67. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
4 Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. Adv Food Nutr Res 2020;93:1-58. [PMID: 32711860 DOI: 10.1016/bs.afnr.2020.04.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Wang K, Wang P, Wang M, Yu D, Wan F, Bligh SA. Comparative study of electrospun crystal-based and composite-based drug nano depots. Materials Science and Engineering: C 2020;113:110988. [DOI: 10.1016/j.msec.2020.110988] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
6 Chen W, Wainer J, Ryoo SW, Qi X, Chang R, Li J, Lee SH, Min S, Wentworth A, Collins JE, Tamang S, Ishida K, Hayward A, Langer R, Traverso G. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci Adv 2022;8:eabk1792. [PMID: 34985942 DOI: 10.1126/sciadv.abk1792] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Talebian S, Schofield T, Valtchev P, Schindeler A, Kavanagh JM, Adil Q, Dehghani F. Biopolymer-Based Multilayer Microparticles for Probiotic Delivery to Colon. Adv Healthc Mater 2022;11:e2102487. [PMID: 35189037 DOI: 10.1002/adhm.202102487] [Reference Citation Analysis]
8 Stie MB, Corezzi M, Juncos Bombin AD, Ajalloueian F, Attrill E, Pagliara S, Jacobsen J, Chronakis IS, Nielsen HM, Foderà V. Waterborne Electrospinning of α-Lactalbumin Generates Tunable and Biocompatible Nanofibers for Drug Delivery. ACS Appl Nano Mater 2020;3:1910-21. [DOI: 10.1021/acsanm.9b02557] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
9 Hou J, Yang J, Zheng X, Wang M, Liu Y, Yu D. A nanofiber-based drug depot with high drug loading for sustained release. International Journal of Pharmaceutics 2020;583:119397. [DOI: 10.1016/j.ijpharm.2020.119397] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 14.0] [Reference Citation Analysis]
10 Vass P, Nagy ZK, Kóczián R, Fehér C, Démuth B, Szabó E, Andersen SK, Vigh T, Verreck G, Csontos I, Marosi G, Hirsch E. Continuous drying of a protein-type drug using scaled-up fiber formation with HP-β-CD matrix resulting in a directly compressible powder for tableting. European Journal of Pharmaceutical Sciences 2020;141:105089. [DOI: 10.1016/j.ejps.2019.105089] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
11 Guerrero Sanchez M, Passot S, Campoy S, Olivares M, Fonseca F. Ligilactobacillus salivarius functionalities, applications, and manufacturing challenges. Appl Microbiol Biotechnol 2021. [PMID: 34889985 DOI: 10.1007/s00253-021-11694-0] [Reference Citation Analysis]
12 Wahlgren M, Axenstrand M, Håkansson Å, Marefati A, Lomstein Pedersen B. In Vitro Methods to Study Colon Release: State of the Art and An Outlook on New Strategies for Better In-Vitro Biorelevant Release Media. Pharmaceutics 2019;11:E95. [PMID: 30813323 DOI: 10.3390/pharmaceutics11020095] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
13 Arévalo-pérez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. Journal of Controlled Release 2020;327:703-24. [DOI: 10.1016/j.jconrel.2020.09.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
14 Mohamed JM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr Polym 2021;252:117180. [PMID: 33183627 DOI: 10.1016/j.carbpol.2020.117180] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
15 Chen F, Liu Q, Xiong Y, Xu L. Current Strategies and Potential Prospects of Nanomedicine-Mediated Therapy in Inflammatory Bowel Disease. Int J Nanomedicine 2021;16:4225-37. [PMID: 34188471 DOI: 10.2147/IJN.S310952] [Reference Citation Analysis]
16 Vass P, Szabó E, Domokos A, Hirsch E, Galata D, Farkas B, Démuth B, Andersen SK, Vigh T, Verreck G, Marosi G, Nagy ZK. Scale‐up of electrospinning technology: Applications in the pharmaceutical industry. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1611] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
17 Kulkarni N, Jain P, Shindikar A, Suryawanshi P, Thorat N. Advances in the colon-targeted chitosan based drug delivery systems for the treatment of inflammatory bowel disease. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.119351] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Yang Y, Chang S, Bai Y, Du Y, Yu D. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydrate Polymers 2020;243:116477. [DOI: 10.1016/j.carbpol.2020.116477] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 18.0] [Reference Citation Analysis]
19 Haddadzadegan S, Dorkoosh F, Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022;182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
20 Yu D, Wang M, Li X, Liu X, Zhu L, Annie Bligh SW. Multifluid electrospinning for the generation of complex nanostructures. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1601] [Cited by in Crossref: 41] [Cited by in F6Publishing: 29] [Article Influence: 13.7] [Reference Citation Analysis]
21 Stie MB, Gätke JR, Chronakis IS, Jacobsen J, Nielsen HM. Mucoadhesive Electrospun Nanofiber-Based Hybrid System with Controlled and Unidirectional Release of Desmopressin. Int J Mol Sci 2022;23:1458. [PMID: 35163377 DOI: 10.3390/ijms23031458] [Reference Citation Analysis]
22 Aguero L, Alpdagtas S, Ilhan E, Zaldivar-silva D, Gunduz O. Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. European Polymer Journal 2021;160:110807. [DOI: 10.1016/j.eurpolymj.2021.110807] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Mazzoni C, Nielsen LH. Microdevices to successfully deliver orally administered drugs. Nanotechnology for Oral Drug Delivery. Elsevier; 2020. pp. 285-315. [DOI: 10.1016/b978-0-12-818038-9.00012-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Teruel AH, Gonzalez-Alvarez I, Bermejo M, Merino V, Marcos MD, Sancenon F, Gonzalez-Alvarez M, Martinez-Mañez R. New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. Int J Mol Sci 2020;21:E6502. [PMID: 32899548 DOI: 10.3390/ijms21186502] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
25 Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. European Journal of Pharmaceutical Sciences 2020;144:105224. [DOI: 10.1016/j.ejps.2020.105224] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
26 Huang C, Zhang K, Gong Q, Yu D, Wang J, Tan X, Quan H. Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning. International Journal of Biological Macromolecules 2020;152:68-76. [DOI: 10.1016/j.ijbiomac.2020.02.239] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 17.5] [Reference Citation Analysis]
27 Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2020;8:1020-44. [PMID: 31621709 DOI: 10.1039/c9bm01378d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
28 Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020;11:524. [PMID: 32425781 DOI: 10.3389/fphar.2020.00524] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
29 Sharma A, Khamar D, Cullen S, Hayden A, Hughes H. Innovative Drying Technologies for Biopharmaceuticals. Int J Pharm 2021;609:121115. [PMID: 34547393 DOI: 10.1016/j.ijpharm.2021.121115] [Reference Citation Analysis]
30 Yang Y, Zhu T, Liu Z, Luo M, Yu D, Annie Bligh S. The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers. International Journal of Pharmaceutics 2019;569:118634. [DOI: 10.1016/j.ijpharm.2019.118634] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 15.3] [Reference Citation Analysis]
31 Vass P, Hirsch E, Kóczián R, Démuth B, Farkas A, Fehér C, Szabó E, Németh Á, Andersen SK, Vigh T, Verreck G, Csontos I, Marosi G, Nagy ZK. Scaled-Up Production and Tableting of Grindable Electrospun Fibers Containing a Protein-Type Drug. Pharmaceutics 2019;11:E329. [PMID: 31336743 DOI: 10.3390/pharmaceutics11070329] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
32 Tran PHL, Duan W, Lee BJ, Tran TTD. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int J Pharm 2019;569:118614. [PMID: 31415877 DOI: 10.1016/j.ijpharm.2019.118614] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zhao P, Xia X, Xu X, Leung KKC, Rai A, Deng Y, Yang B, Lai H, Peng X, Shi P, Zhang H, Chiu PWY, Bian L. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat Commun 2021;12:7162. [PMID: 34887414 DOI: 10.1038/s41467-021-27463-6] [Reference Citation Analysis]
34 Halamish HM, Trousil J, Rak D, Knudsen KD, Pavlova E, Nyström B, Štěpánek P, Sosnik A. Self-assembly and nanostructure of poly(vinyl alcohol)-graft-poly(methyl methacrylate) amphiphilic nanoparticles. Journal of Colloid and Interface Science 2019;553:512-23. [DOI: 10.1016/j.jcis.2019.06.047] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
35 Silva AC, Costa CP, Almeida H, Moreira JN, Sousa Lobo JM. Hormones, Blood Products, and Therapeutic Enzymes. Adv Biochem Eng Biotechnol 2020;171:115-53. [PMID: 31559442 DOI: 10.1007/10_2019_111] [Reference Citation Analysis]
36 Wang M, Hou J, Yu D, Li S, Zhu J, Chen Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. Journal of Alloys and Compounds 2020;846:156471. [DOI: 10.1016/j.jallcom.2020.156471] [Cited by in Crossref: 36] [Cited by in F6Publishing: 13] [Article Influence: 18.0] [Reference Citation Analysis]
37 Huang W, Hou Y, Lu X, Gong Z, Yang Y, Lu XJ, Liu XL, Yu DG. The Process⁻Property⁻Performance Relationship of Medicated Nanoparticles Prepared by Modified Coaxial Electrospraying. Pharmaceutics 2019;11:E226. [PMID: 31083358 DOI: 10.3390/pharmaceutics11050226] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
38 Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021;11:941-60. [PMID: 33996408 DOI: 10.1016/j.apsb.2020.12.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 28.0] [Reference Citation Analysis]
39 Zhang T, Zhu G, Lu B, Qian Z, Peng Q. Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles. Med Res Rev 2021;41:1835-50. [DOI: 10.1002/med.21767] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Abbasi A, Hajipour N, Hasannezhad P, Baghbanzadeh A, Aghebati-maleki L. Potential in vivo delivery routes of postbiotics. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2020.1865260] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Janardhanam LSL, Indukuri VV, Verma P, Dusane AC, Venuganti VVK. Functionalized layer-by-layer assembled film with directional 5-fluorouracil release to target colon cancer. Mater Sci Eng C Mater Biol Appl 2020;115:111118. [PMID: 32600718 DOI: 10.1016/j.msec.2020.111118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
42 Pandya AK, Patravale VB. Computational avenues in oral protein and peptide therapeutics. Drug Discov Today 2021;26:1510-20. [PMID: 33684525 DOI: 10.1016/j.drudis.2021.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Wang M, Hai T, Feng Z, Yu DG, Yang Y, Bligh SA. The Relationships between the Working Fluids, Process Characteristics and Products from the Modified Coaxial Electrospinning of Zein. Polymers (Basel) 2019;11:E1287. [PMID: 31374977 DOI: 10.3390/polym11081287] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
44 Domján J, Vass P, Hirsch E, Szabó E, Pantea E, Andersen SK, Vigh T, Verreck G, Marosi G, Nagy ZK. Monoclonal antibody formulation manufactured by high-speed electrospinning. Int J Pharm 2020;591:120042. [PMID: 33157211 DOI: 10.1016/j.ijpharm.2020.120042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Chang S, Wang M, Zhang F, Liu Y, Liu X, Yu D, Shen H. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Materials & Design 2020;192:108782. [DOI: 10.1016/j.matdes.2020.108782] [Cited by in Crossref: 41] [Cited by in F6Publishing: 13] [Article Influence: 20.5] [Reference Citation Analysis]
46 Kang S, Hou S, Chen X, Yu DG, Wang L, Li X, R Williams G. Energy-Saving Electrospinning with a Concentric Teflon-Core Rod Spinneret to Create Medicated Nanofibers. Polymers (Basel) 2020;12:E2421. [PMID: 33092310 DOI: 10.3390/polym12102421] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]