BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016;240:504-26. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Cited by in Crossref: 184] [Cited by in F6Publishing: 154] [Article Influence: 30.7] [Reference Citation Analysis]
Number Citing Articles
1 Chen Z, Han S, Zhou S, Feng H, Liu Y, Jia G. Review of health safety aspects of titanium dioxide nanoparticles in food application. NanoImpact 2020;18:100224. [DOI: 10.1016/j.impact.2020.100224] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
2 Araújo F, das Neves J, Martins JP, Granja PL, Santos HA, Sarmento B. Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Progress in Materials Science 2017;89:306-44. [DOI: 10.1016/j.pmatsci.2017.05.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
3 Zhang M, Xu C, Liu D, Han MK, Wang L, Merlin D. Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis. J Crohns Colitis 2018;12:217-29. [PMID: 28961808 DOI: 10.1093/ecco-jcc/jjx115] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 15.3] [Reference Citation Analysis]
4 Qu G, Hou S, Qu D, Tian C, Zhu J, Xue L, Ju C, Zhang C. Self-assembled micelles based on N-octyl-N’-phthalyl-O-phosphoryl chitosan derivative as an effective oral carrier of paclitaxel. Carbohydrate Polymers 2019;207:428-39. [DOI: 10.1016/j.carbpol.2018.11.099] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
5 Zhang Z, Mcclements DJ. Overview of Nanoemulsion Properties: Stability, Rheology, and Appearance. Nanoemulsions. Elsevier; 2018. pp. 21-49. [DOI: 10.1016/b978-0-12-811838-2.00002-3] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
6 Na R, Wei T. Recent perspectives of nanotechnology in burn wounds management: a review. J Wound Care 2021;30:350-70. [PMID: 33979218 DOI: 10.12968/jowc.2021.30.5.350] [Reference Citation Analysis]
7 Inkielewicz-Stepniak I, Tajber L, Behan G, Zhang H, Radomski MW, Medina C, Santos-Martinez MJ. The Role of Mucin in the Toxicological Impact of Polystyrene Nanoparticles. Materials (Basel) 2018;11:E724. [PMID: 29751544 DOI: 10.3390/ma11050724] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
8 Cui Y, Zhu T, Zhang X, Chen J, Sun F, Li Y, Teng L. Oral delivery of superoxide dismutase by lipid polymer hybrid nanoparticles for the treatment of ulcerative colitis. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.03.077] [Reference Citation Analysis]
9 Gonzalez-Melo C, Garcia-Brand AJ, Quezada V, Reyes LH, Muñoz-Camargo C, Cruz JC. Highly Efficient Synthesis of Type B Gelatin and Low Molecular Weight Chitosan Nanoparticles: Potential Applications as Bioactive Molecule Carriers and Cell-Penetrating Agents. Polymers (Basel) 2021;13:4078. [PMID: 34883582 DOI: 10.3390/polym13234078] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Suñé-Pou M, Prieto-Sánchez S, Boyero-Corral S, Moreno-Castro C, El Yousfi Y, Suñé-Negre JM, Hernández-Munain C, Suñé C. Targeting Splicing in the Treatment of Human Disease. Genes (Basel) 2017;8:E87. [PMID: 28245575 DOI: 10.3390/genes8030087] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
11 Qi J, Zhuang J, Lv Y, Lu Y, Wu W. Exploiting or overcoming the dome trap for enhanced oral immunization and drug delivery. Journal of Controlled Release 2018;275:92-106. [DOI: 10.1016/j.jconrel.2018.02.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
12 Xu G, Wang C, Yao P. Stable emulsion produced from casein and soy polysaccharide compacted complex for protection and oral delivery of curcumin. Food Hydrocolloids 2017;71:108-17. [DOI: 10.1016/j.foodhyd.2017.05.010] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
13 Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. [DOI: 10.1002/nano.202100255] [Reference Citation Analysis]
14 Miao YB, Lin YJ, Chen KH, Luo PK, Chuang SH, Yu YT, Tai HM, Chen CT, Lin KJ, Sung HW. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. Adv Mater 2021;33:e2104139. [PMID: 34596293 DOI: 10.1002/adma.202104139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
15 Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Solid nanoparticles for oral antimicrobial drug delivery: a review. Drug Discov Today 2019;24:858-66. [PMID: 30654055 DOI: 10.1016/j.drudis.2019.01.004] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
16 Italiya KS, Singh AK, Chitkara D, Mittal A. Nanoparticulate tablet dosage form of lisofylline-linoleic acid conjugate for type 1 diabetes: in situ single-pass intestinal perfusion (SPIP) studies and pharmacokinetics in rat. AAPS PharmSciTech 2021;22:114. [PMID: 33763759 DOI: 10.1208/s12249-021-01980-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wilson BK, Prud'homme RK. Processing Chitosan for Preparing Chitosan-Functionalized Nanoparticles by Polyelectrolyte Adsorption. Langmuir 2021;37:8517-24. [PMID: 34236205 DOI: 10.1021/acs.langmuir.1c00990] [Reference Citation Analysis]
18 Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020;12:E192. [PMID: 32102252 DOI: 10.3390/pharmaceutics12020192] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
19 Sadeghi S, Lee WK, Kong SN, Shetty A, Drum CL. Oral administration of protein nanoparticles: An emerging route to disease treatment. Pharmacological Research 2020;158:104685. [DOI: 10.1016/j.phrs.2020.104685] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
20 Wang J, Chin D, Poon C, Mancino V, Pham J, Li H, Ho PY, Hallows KR, Chung EJ. Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. J Control Release 2021;329:1198-209. [PMID: 33127449 DOI: 10.1016/j.jconrel.2020.10.047] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
21 Maikawa CL, Sevit A, Lin B, Wallstrom RJ, Mann JL, Yu AC, Waymouth RM, Appel EA. Block copolymer composition drives function of self-assembled nanoparticles for delivery of small-molecule cargo. J Polym Sci A Polym Chem 2019;57:1322-32. [PMID: 31244507 DOI: 10.1002/pola.29393] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
22 Ruan J, Yang Y, Yang F, Wan K, Fan D, Wang D. Novel oral administrated ellagic acid nanoparticles for enhancing oral bioavailability and anti-inflammatory efficacy. Journal of Drug Delivery Science and Technology 2018;46:215-22. [DOI: 10.1016/j.jddst.2018.05.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
23 Placha D, Jampilek J. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics 2021;13:64. [PMID: 33419176 DOI: 10.3390/pharmaceutics13010064] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
24 McGraw E, Roberts JD, Kunte N, Westerfield M, Streety X, Held D, Avila LA. Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut. ACS Omega 2022;7:10933-43. [PMID: 35415340 DOI: 10.1021/acsomega.1c06638] [Reference Citation Analysis]
25 Öztürk AA, Arpagaus C. Nano Spray-Dried Drugs for Oral Administration: A Review. Assay Drug Dev Technol 2021;19:412-41. [PMID: 34550790 DOI: 10.1089/adt.2021.053] [Reference Citation Analysis]
26 Huang W, Li S, Li Z, Zhu W, Lu S, Jiang Y. Development of a resveratrol–zein–dopamine–lecithin delivery system with enhanced stability and mucus permeation. J Mater Sci 2019;54:8591-601. [DOI: 10.1007/s10853-019-03465-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
27 Mitsou E, Dupin A, Sassi AH, Monteil J, Sotiroudis GT, Leal-Calderon F, Xenakis A. Hydroxytyrosol encapsulated in biocompatible water-in-oil microemulsions: How the structure affects in vitro absorption. Colloids Surf B Biointerfaces 2019;184:110482. [PMID: 31539752 DOI: 10.1016/j.colsurfb.2019.110482] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Cui F, Liu J, Liu Y, Yuan B, Gong X, Yuan Q, Gong T, Wang L. Synthesis of PEGylated BaGdF5 Nanoparticles as Efficient CT/MRI Dual-modal Contrast Agents for Gastrointestinal Tract Imaging. Chinese Journal of Analytical Chemistry 2020;48:1004-11. [DOI: 10.1016/s1872-2040(20)60039-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Nunes R, Neves JD, Sarmento B. Nanoparticles for the regulation of intestinal inflammation: opportunities and challenges. Nanomedicine (Lond) 2019;14:2631-44. [PMID: 31612773 DOI: 10.2217/nnm-2019-0191] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
30 Cui Z, Qin L, Guo S, Cheng H, Zhang X, Guan J, Mao S. Design of biotin decorated enterocyte targeting muco-inert nanocomplexes for enhanced oral insulin delivery. Carbohydrate Polymers 2021;261:117873. [DOI: 10.1016/j.carbpol.2021.117873] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019;13:327-43. [PMID: 30705582 DOI: 10.2147/DDDT.S190577] [Cited by in Crossref: 45] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
32 Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020;25:E3760. [PMID: 32824757 DOI: 10.3390/molecules25163760] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
33 Biosca A, Cabanach P, Abdulkarim M, Gumbleton M, Gómez-Canela C, Ramírez M, Bouzón-Arnáiz I, Avalos-Padilla Y, Borros S, Fernàndez-Busquets X. Zwitterionic self-assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment. J Control Release 2021;331:364-75. [PMID: 33497747 DOI: 10.1016/j.jconrel.2021.01.028] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. Nanomaterials (Basel) 2021;11:396. [PMID: 33557177 DOI: 10.3390/nano11020396] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
35 Italiya KS, Basak M, Mazumdar S, Sahel DK, Shrivastava R, Chitkara D, Mittal A. Scalable Self-Assembling Micellar System for Enhanced Oral Bioavailability and Efficacy of Lisofylline for Treatment of Type-I Diabetes. Mol Pharmaceutics 2019;16:4954-67. [DOI: 10.1021/acs.molpharmaceut.9b00833] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Hunt NJ, Mccourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Opportunities and Challenges for Nanotherapeutics for the Aging Population. Front Nanotechnol 2022;4:832524. [DOI: 10.3389/fnano.2022.832524] [Reference Citation Analysis]
37 Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021;50:4872-931. [DOI: 10.1039/d0cs01061h] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Das N, Raymick J, Sarkar S. Role of metals in Alzheimer's disease. Metab Brain Dis 2021. [PMID: 34313926 DOI: 10.1007/s11011-021-00765-w] [Reference Citation Analysis]
39 Ejaz S, Ejaz S, Shahid R, Noor T, Shabbir S, Imran M. Chitosan-curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. Int J Biol Macromol 2022;204:540-54. [PMID: 35157901 DOI: 10.1016/j.ijbiomac.2022.02.039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Wauthoz N, Rosière R, Amighi K. Inhaled cytotoxic chemotherapy: clinical challenges, recent developments, and future prospects. Expert Opin Drug Deliv 2021;18:333-54. [PMID: 33050733 DOI: 10.1080/17425247.2021.1829590] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Ranjbar S, Fatahi Y, Atyabi F. The quest for a better fight: How can nanomaterials address the current therapeutic and diagnostic obstacles in the fight against COVID-19? J Drug Deliv Sci Technol 2021;:102899. [PMID: 34630635 DOI: 10.1016/j.jddst.2021.102899] [Reference Citation Analysis]
42 Gao Y, Zuo S, Li L, Liu T, Dong F, Wang X, Zhang X, He Z, Zhai Y, Sun B, Sun J. The length of disulfide bond-containing linkages impacts the oral absorption and antitumor activity of paclitaxel prodrug-loaded nanoemulsions. Nanoscale 2021;13:10536-43. [PMID: 34100041 DOI: 10.1039/d1nr01359a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Liu W, Li D, Dong Z, Liu K, He H, Lu Y, Wu W, Li Q, Gan L, Qi J. Insight into the in vivo translocation of oral liposomes by fluorescence resonance energy transfer effect. Int J Pharm 2020;587:119682. [PMID: 32717284 DOI: 10.1016/j.ijpharm.2020.119682] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
44 Kou L, Sun R, Xiao S, Cui X, Sun J, Ganapathy V, Yao Q, Chen R. OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo. Drug Deliv 2020;27:170-9. [PMID: 31913724 DOI: 10.1080/10717544.2019.1710623] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of Natural Antioxidants: An Anti-aging Perspective. Front Bioeng Biotechnol 2019;7:447. [PMID: 31998711 DOI: 10.3389/fbioe.2019.00447] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
46 Fan PS, Sun MJ, Qin D, Yuan CS, Chen XG, Liu Y. Nanosystems as curative platforms for allergic disorder management. J Mater Chem B 2021;9:1729-44. [PMID: 33475131 DOI: 10.1039/d0tb02590a] [Reference Citation Analysis]
47 Kathpalia H, Juvekar S, Mohanraj K, Apsingekar M, Shidhaye S. Investigation of pre-clinical pharmacokinetic parameters of atovaquone nanosuspension prepared using a pH-based precipitation method and its pharmacodynamic properties in a novel artemisinin combination. J Glob Antimicrob Resist 2020;22:248-56. [PMID: 32119990 DOI: 10.1016/j.jgar.2020.02.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS Nano 2021;15:3736-53. [PMID: 33600163 DOI: 10.1021/acsnano.0c09514] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 22.0] [Reference Citation Analysis]
49 Zandanel C, Ponchel G, Noiray M, Vauthier C. Nanoparticles facing the gut barrier: Retention or mucosal absorption? Mechanisms and dependency to nanoparticle characteristics. Int J Pharm 2021;609:121147. [PMID: 34600059 DOI: 10.1016/j.ijpharm.2021.121147] [Reference Citation Analysis]
50 Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int J Mol Sci 2022;23:1140. [PMID: 35163063 DOI: 10.3390/ijms23031140] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Sabra R, Billa N. Soliciting the Oral Route as a Logical Approach to Managing Colon Cancer. Front Bioeng Biotechnol 2021;9:645923. [PMID: 33718345 DOI: 10.3389/fbioe.2021.645923] [Reference Citation Analysis]
52 Howick K, Alam R, Chruscicka B, Kandil D, Fitzpatrick D, Ryan AM, Cryan JF, Schellekens H, Griffin BT. Sustained-release multiparticulates for oral delivery of a novel peptidic ghrelin agonist: Formulation design and in vitro characterization. Int J Pharm 2018;536:63-72. [PMID: 29175643 DOI: 10.1016/j.ijpharm.2017.11.051] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
53 Bianchera A, Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug-polymer and interpolymer interactions. Expert Opin Drug Deliv 2020;17:1345-59. [PMID: 32602795 DOI: 10.1080/17425247.2020.1789585] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
54 Kaneko K, Osman N, Carini V, Scagnetti G, Saleem I. Overview of the Advantages and Disadvantages of Different Mucosal Sites for the Delivery of Nanoparticles. In: Muttil P, Kunda NK, editors. Mucosal Delivery of Drugs and Biologics in Nanoparticles. Cham: Springer International Publishing; 2020. pp. 61-82. [DOI: 10.1007/978-3-030-35910-2_3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Cui Y, Shan W, Zhou R, Liu M, Wu L, Guo Q, Zheng Y, Wu J, Huang Y. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of “easy uptake hard transcytosis” of ligand-modified nanoparticles in oral drug delivery. Nanoscale 2018;10:1494-507. [DOI: 10.1039/c7nr06063g] [Cited by in Crossref: 29] [Cited by in F6Publishing: 5] [Article Influence: 7.3] [Reference Citation Analysis]
56 Liu Y, Huang P, Hou X, Yan F, Jiang Z, Shi J, Xie X, Shen J, Fan Q, Wang Z, Feng N. Hybrid curcumin-phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer. Int J Nanomedicine 2019;14:3311-30. [PMID: 31190795 DOI: 10.2147/IJN.S200847] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
57 Zhao C, Cai L, Chen H, Tan H, Yan D. Oral biomaterials for intestinal regulation. Engineered Regeneration 2021;2:116-32. [DOI: 10.1016/j.engreg.2021.09.002] [Reference Citation Analysis]
58 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Reference Citation Analysis]
59 Mittag A, Schneider T, Westermann M, Glei M. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Arch Toxicol 2019;93:1491-500. [PMID: 30989313 DOI: 10.1007/s00204-019-02451-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
60 Zhang Q, Wu W, Zhang J, Xia X. Eradication of Helicobacter pylori: the power of nanosized formulations. Nanomedicine (Lond) 2020;15:527-42. [PMID: 32028847 DOI: 10.2217/nnm-2019-0329] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
61 Liu Y, Jiang Z, Hou X, Xie X, Shi J, Shen J, He Y, Wang Z, Feng N. Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport. Nanomedicine 2019;21:102075. [PMID: 31377378 DOI: 10.1016/j.nano.2019.102075] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
62 Yang C, Zhang M, Lama S, Wang L, Merlin D. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J Control Release 2020;323:293-310. [PMID: 32335157 DOI: 10.1016/j.jconrel.2020.04.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
63 Zhou S, Deng H, Zhang Y, Wu P, He B, Dai W, Zhang H, Zhang Q, Zhao R, Wang X. Thiolated Nanoparticles Overcome the Mucus Barrier and Epithelial Barrier for Oral Delivery of Insulin. Mol Pharmaceutics 2020;17:239-50. [DOI: 10.1021/acs.molpharmaceut.9b00971] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
64 Rawal M, Singh A, Amiji MM. Quality-by-Design Concepts to Improve Nanotechnology-Based Drug Development. Pharm Res 2019;36:153. [PMID: 31482243 DOI: 10.1007/s11095-019-2692-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
65 Ibrahim D, Kishawy ATY, Khater SI, Khalifa E, Ismail TA, Mohammed HA, Elnahriry SS, Tolba HA, Sherief WRIA, Farag MFM, El-Hamid MIA. Interactive effects of dietary quercetin nanoparticles on growth, flesh antioxidant capacity and transcription of cytokines and Aeromonas hydrophila quorum sensing orchestrating genes in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2021;119:478-89. [PMID: 34699975 DOI: 10.1016/j.fsi.2021.10.034] [Reference Citation Analysis]
66 Vilar CJF, Ribeiro SB, de Araújo AA, Guerra GCB, de Araújo Júnior RF, Brito GAC, Leitão RFC, Pontes DL, Gasparotto LHDS, Oliveira MMB, Viana AD, de Medeiros WMTQ, Bezerra BGP, de Medeiros CACX. Effect of Gold Nanoparticle on 5-Fluorouracil-Induced Experimental Oral Mucositis in Hamsters. Pharmaceutics 2020;12:E304. [PMID: 32230975 DOI: 10.3390/pharmaceutics12040304] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
67 Brown TD, Whitehead KA, Mitragotri S. Materials for oral delivery of proteins and peptides. Nat Rev Mater 2020;5:127-48. [DOI: 10.1038/s41578-019-0156-6] [Cited by in Crossref: 74] [Cited by in F6Publishing: 39] [Article Influence: 24.7] [Reference Citation Analysis]
68 Yu Z, Fan W, Wang L, He H, Lv Y, Qi J, Lu Y, Wu W. Slowing down lipolysis significantly enhances the oral absorption of intact solid lipid nanoparticles. Biomater Sci 2019;7:4273-82. [PMID: 31407729 DOI: 10.1039/c9bm00873j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
69 Jia Z, Wignall A, Delon L, Guo Z, Prestidge C, Thierry B. An ex Vivo Model Enables Systematic Investigation of the Intestinal Absorption and Transcytosis of Oral Particulate Nanocarriers. ACS Biomater Sci Eng 2021. [PMID: 33908245 DOI: 10.1021/acsbiomaterials.0c01355] [Reference Citation Analysis]
70 Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021;150:109889. [PMID: 34489042 DOI: 10.1016/j.enzmictec.2021.109889] [Reference Citation Analysis]
71 de Oliveira RN, Campos PM, Pinto RMC, Mioduski J, Santos RD, Justus B, de Paula JDFP, Klein T, Boscardin PMD, Corrêa SDAP, Allegretti SM, Ferrari PC. The promising antischistosomal activity of oleic acid-loaded polymeric nanocapsules for oral administration. Journal of Drug Delivery Science and Technology 2021;63:102429. [DOI: 10.1016/j.jddst.2021.102429] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
72 Bertoni S, Tedesco D, Bartolini M, Prata C, Passerini N, Albertini B. Solid Lipid Microparticles for Oral Delivery of Catalase: Focus on the Protein Structural Integrity and Gastric Protection. Mol Pharm 2020;17:3609-21. [PMID: 32786955 DOI: 10.1021/acs.molpharmaceut.0c00666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
73 Kalombo L, Lemmer Y, Semete-Makokotlela B, Ramalapa B, Nkuna P, Booysen LLLIJ, Naidoo S, Hayeshi R, Verschoor JA, Swai HS. Spray-Dried, Nanoencapsulated, Multi-Drug Anti-Tuberculosis Therapy Aimed at Once Weekly Administration for the Duration of Treatment. Nanomaterials (Basel) 2019;9:E1167. [PMID: 31443150 DOI: 10.3390/nano9081167] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
74 Amara RO, Ramadan AA, El-Moslemany RM, Eissa MM, El-Azzouni MZ, El-Khordagui LK. Praziquantel-lipid nanocapsules: an oral nanotherapeutic with potential Schistosoma mansoni tegumental targeting. Int J Nanomedicine 2018;13:4493-505. [PMID: 30122922 DOI: 10.2147/IJN.S167285] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
75 Feeney OM, Gracia G, Brundel DHS, Trevaskis NL, Cao E, Kaminskas LM, Porter CJH. Lymph-directed immunotherapy - Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Adv Drug Deliv Rev 2020;160:115-35. [PMID: 33039497 DOI: 10.1016/j.addr.2020.10.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
76 Prosperi D, Colombo M, Zanoni I, Granucci F. Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Semin Immunol 2017;34:61-7. [PMID: 28855088 DOI: 10.1016/j.smim.2017.08.010] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
77 Antunes JC, Seabra CL, Domingues JM, Teixeira MO, Nunes C, Costa-Lima SA, Homem NC, Reis S, Amorim MTP, Felgueiras HP. Drug Targeting of Inflammatory Bowel Diseases by Biomolecules. Nanomaterials (Basel) 2021;11:2035. [PMID: 34443866 DOI: 10.3390/nano11082035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
78 Mabrouk MT, Zhang H, Zidan AA, Kilian HI, Huang WC, Jahagirdar D, Ortega J, Xia J, Lovell JF. Cross-linked Histone as a Nanocarrier for Gut Delivery of Hydrophobic Cargos. ACS Appl Mater Interfaces 2021;13:26712-20. [PMID: 34082523 DOI: 10.1021/acsami.1c04134] [Reference Citation Analysis]
79 Dissanayake T, Sun X, Abbey L, Bandara N. Recent advances in lipid-protein conjugate-based delivery systems in nutraceutical, drug, and gene delivery. Food Hydrocolloids for Health 2022;2:100054. [DOI: 10.1016/j.fhfh.2022.100054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
80 Lee LKC, Leong LI, Liu Y, Luo M, Chan HYE, Choi CHJ. Preclinical Nanomedicines for Polyglutamine-Based Neurodegenerative Diseases. Mol Pharm 2021;18:610-26. [PMID: 32584043 DOI: 10.1021/acs.molpharmaceut.0c00506] [Reference Citation Analysis]
81 Minakshi P, Kumar R, Ghosh M, Brar B, Barnela M, Lakhani P. Application of Polymeric Nano-Materials in Management of Inflammatory Bowel Disease. Curr Top Med Chem 2020;20:982-1008. [PMID: 32196449 DOI: 10.2174/1568026620666200320113322] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
82 Diehl HP, Wildey A, Prasasty VD, Siahaan TJ. Organization of the intestinal mucosa and barriers to oral drug delivery. Nanotechnology for Oral Drug Delivery. Elsevier; 2020. pp. 7-25. [DOI: 10.1016/b978-0-12-818038-9.00002-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Chernykh IV, Kopanitsa MA, Shchul’kin AV, Yakusheva EN, Frolova MA. Gold Nanoparticles as Potential Antitumor Agents (Review). Pharm Chem J 2021;55:934-41. [DOI: 10.1007/s11094-021-02518-6] [Reference Citation Analysis]
84 Sun M, Hu H, Sun L, Fan Z. The application of biomacromolecules to improve oral absorption by enhanced intestinal permeability: A mini-review. Chinese Chemical Letters 2020;31:1729-36. [DOI: 10.1016/j.cclet.2020.02.035] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
85 Liu J, Leng P, Liu Y. Oral drug delivery with nanoparticles into the gastrointestinal mucosa. Fundam Clin Pharmacol 2021;35:86-96. [PMID: 32749731 DOI: 10.1111/fcp.12594] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Wijetunge SS, Wen J, Yeh C, Sun Y. Lectin-Conjugated Liposomes as Biocompatible, Bioadhesive Drug Carriers for the Management of Oral Ulcerative Lesions. ACS Appl Bio Mater 2018;1:1487-95. [DOI: 10.1021/acsabm.8b00425] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
87 Elberskirch L, Knoll T, Königsmark R, Renner J, Wilhelm N, von Briesen H, Wagner S. Microfluidic 3D intestine tumor spheroid model for efficient in vitro investigation of nanoparticular formulations. Journal of Drug Delivery Science and Technology 2021;63:102496. [DOI: 10.1016/j.jddst.2021.102496] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
88 Fernandes Patta AC, Mathews PD, Madrid RR, Rigoni VL, Silva ER, Mertins O. Polyionic complexes of chitosan-N-arginine with alginate as pH responsive and mucoadhesive particles for oral drug delivery applications. International Journal of Biological Macromolecules 2020;148:550-64. [DOI: 10.1016/j.ijbiomac.2020.01.160] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
89 Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. American Journal of Physiology-Renal Physiology 2019;317:F1255-64. [DOI: 10.1152/ajprenal.00346.2019] [Reference Citation Analysis]
90 Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016;106:256-76. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Cited by in Crossref: 259] [Cited by in F6Publishing: 223] [Article Influence: 43.2] [Reference Citation Analysis]
91 Fabiano A, Piras AM, Uccello-Barretta G, Balzano F, Cesari A, Testai L, Citi V, Zambito Y. Impact of mucoadhesive polymeric nanoparticulate systems on oral bioavailability of a macromolecular model drug. Eur J Pharm Biopharm 2018;130:281-9. [PMID: 30006244 DOI: 10.1016/j.ejpb.2018.07.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
92 Feczkó T. Polymeric nanotherapeutics acting at special regions of body. Journal of Drug Delivery Science and Technology 2021;64:102597. [DOI: 10.1016/j.jddst.2021.102597] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
93 Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface Modification of Lipid-Based Nanoparticles. ACS Nano 2022. [PMID: 35446546 DOI: 10.1021/acsnano.2c02347] [Reference Citation Analysis]
94 Cui Z, Liu C, Cui S, Qin L, Zhang X, Guan J, Mao S. Exploring the potential of redispersible nanocomplex-in-microparticles for enhanced oral insulin delivery. Int J Pharm 2022;612:121357. [PMID: 34890708 DOI: 10.1016/j.ijpharm.2021.121357] [Reference Citation Analysis]
95 Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of Nanoparticles on Brain Health: An Up to Date Overview. J Clin Med 2018;7:E490. [PMID: 30486404 DOI: 10.3390/jcm7120490] [Cited by in Crossref: 61] [Cited by in F6Publishing: 41] [Article Influence: 15.3] [Reference Citation Analysis]
96 Ndayishimiye J, Popat A, Blaskovich M, Falconer JR. Formulation technologies and advances for oral delivery of novel nitroimidazoles and antimicrobial peptides. J Control Release 2020;324:728-49. [PMID: 32380201 DOI: 10.1016/j.jconrel.2020.05.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
97 Zou D, Arora M, Ganugula R, Kumar M, Scott EM, Shah D, Kumar MNVR. Nanoparticles that do not compete with endogenous ligands - Molecular characterization in vitro, acute safety in canine, and interspecies pharmacokinetics modeling to humans. J Control Release 2021;332:64-73. [PMID: 33600881 DOI: 10.1016/j.jconrel.2021.02.009] [Reference Citation Analysis]
98 Bhutani U, Basu T, Majumdar S. Oral Drug Delivery: Conventional to Long Acting New-Age Designs. Eur J Pharm Biopharm 2021;162:23-42. [PMID: 33631319 DOI: 10.1016/j.ejpb.2021.02.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Kou L, Bhutia YD, Yao Q, He Z, Sun J, Ganapathy V. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Front Pharmacol 2018;9:27. [PMID: 29434548 DOI: 10.3389/fphar.2018.00027] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 17.3] [Reference Citation Analysis]
100 He Z, Liu Z, Tian H, Hu Y, Liu L, Leong KW, Mao H, Chen Y. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale 2018;10:3307-19. [DOI: 10.1039/c7nr08047f] [Cited by in Crossref: 37] [Cited by in F6Publishing: 7] [Article Influence: 9.3] [Reference Citation Analysis]
101 Orienti I, Nguyen F, Guan P, Kolla V, Calonghi N, Farruggia G, Chorny M, Brodeur GM. A Novel Nanomicellar Combination of Fenretinide and Lenalidomide Shows Marked Antitumor Activity in a Neuroblastoma Xenograft Model. Drug Des Devel Ther 2019;13:4305-19. [PMID: 31908416 DOI: 10.2147/DDDT.S221909] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
102 Householder KT, Dharmaraj S, Sandberg DI, Wechsler-Reya RJ, Sirianni RW. Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice. Sci Rep 2019;9:12587. [PMID: 31467368 DOI: 10.1038/s41598-019-49028-w] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
103 Yu Z, Fan W, Wang L, Qi J, Lu Y, Wu W. Effect of Surface Charges on Oral Absorption of Intact Solid Lipid Nanoparticles. Mol Pharm 2019;16:5013-24. [PMID: 31638827 DOI: 10.1021/acs.molpharmaceut.9b00861] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
104 Attri A, Thakur D, Kaur T, Sensale S, Peng Z, Kumar D, Singh RP. Nanoparticles Incorporating a Fluorescence Turn-on Reporter for Real-Time Drug Release Monitoring, a Chemoenhancer and a Stealth Agent: Poseidon's Trident against Cancer? Mol Pharm 2021;18:124-47. [PMID: 33346663 DOI: 10.1021/acs.molpharmaceut.0c00730] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Orienti I, Salvati V, Sette G, Zucchetti M, Bongiorno-Borbone L, Peschiaroli A, Zolla L, Francescangeli F, Ferrari M, Matteo C, Bello E, Di Virgilio A, Falchi M, De Angelis ML, Baiocchi M, Melino G, De Maria R, Zeuner A, Eramo A. A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells. J Exp Clin Cancer Res 2019;38:373. [PMID: 31439019 DOI: 10.1186/s13046-019-1383-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
106 Hong Q, Huo S, Tang H, Qu X, Yue B. Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants. Front Bioeng Biotechnol 2021;9:694635. [PMID: 34589470 DOI: 10.3389/fbioe.2021.694635] [Reference Citation Analysis]
107 Zhang R, Mcclements DJ. Characterization of Gastrointestinal Fate of Nanoemulsions. Nanoemulsions. Elsevier; 2018. pp. 577-612. [DOI: 10.1016/b978-0-12-811838-2.00018-7] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
108 Maher S, Brayden DJ, Casettari L, Illum L. Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics 2019;11:E41. [PMID: 30669434 DOI: 10.3390/pharmaceutics11010041] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 17.7] [Reference Citation Analysis]
109 Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. American Journal of Physiology-Renal Physiology 2019;317:F1255-64. [DOI: 10.1152/ajprenal.00346.2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
110 Chen Y, Li N, Xu B, Wu M, Yan X, Zhong L, Cai H, Wang T, Wang Q, Long F, Jiang G, Xiao H. Polymer-based nanoparticles for chemo/gene-therapy: Evaluation its therapeutic efficacy and toxicity against colorectal carcinoma. Biomed Pharmacother 2019;118:109257. [PMID: 31377472 DOI: 10.1016/j.biopha.2019.109257] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
111 Zhao R, Du S, Liu Y, Lv C, Song Y, Chen X, Zhang B, Li D, Gao S, Cui W, Plikus MV, Hou X, Wu K, Liu Z, Liu Z, Cong Y, Li Y, Yu Z. Mucoadhesive-to-penetrating controllable peptosomes-in-microspheres co-loaded with anti-miR-31 oligonucleotide and Curcumin for targeted colorectal cancer therapy. Theranostics 2020;10:3594-611. [PMID: 32206110 DOI: 10.7150/thno.40318] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
112 Mahlert L, Anderski J, Mulac D, Langer K. The impact of gastrointestinal mucus on nanoparticle penetration – in vitro evaluation of mucus-penetrating nanoparticles for photodynamic therapy. European Journal of Pharmaceutical Sciences 2019;133:28-39. [DOI: 10.1016/j.ejps.2019.03.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
113 Nguyen TT, Trinh NT, Tran HN, Tran HT, Le PQ, Ngo DN, Tran-Van H, Van Vo T, Vong LB, Nagasaki Y. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. J Control Release 2021;331:515-24. [PMID: 33616078 DOI: 10.1016/j.jconrel.2020.10.042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
114 Liu Y, Liu J, Liang J, Zhang M, Li Z, Wang Z, Dang B, Feng N. Mucosal transfer of wheat germ agglutinin modified lipid-polymer hybrid nanoparticles for oral delivery of oridonin. Nanomedicine 2017;13:2219-29. [PMID: 28539275 DOI: 10.1016/j.nano.2017.05.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
115 Chen Z, Zheng P, Han S, Zhang J, Li Z, Zhou S, Jia G. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale 2020;12:20033-46. [PMID: 32996981 DOI: 10.1039/d0nr05591c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
116 Maria S, Sarwar HS, Sohail MF, Imran M, Salman Qureshi O, Raza A, Ahmad NM, Iqbal A, Shahnaz G. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide. Journal of Drug Delivery Science and Technology 2020;58:101807. [DOI: 10.1016/j.jddst.2020.101807] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
117 Zhang S, Asghar S, Yu F, Chen Z, Hu Z, Ping Q, Shao F, Xiao Y. BSA Nanoparticles Modified with N-Acetylcysteine for Improving the Stability and Mucoadhesion of Curcumin in the Gastrointestinal Tract. J Agric Food Chem 2019;67:9371-81. [PMID: 31379162 DOI: 10.1021/acs.jafc.9b02272] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
118 Katsarov P, Shindova M, Lukova P, Belcheva A, Delattre C, Pilicheva B. Polysaccharide-Based Micro- and Nanosized Drug Delivery Systems for Potential Application in the Pediatric Dentistry. Polymers (Basel) 2021;13:3342. [PMID: 34641160 DOI: 10.3390/polym13193342] [Reference Citation Analysis]
119 Sreeharsha N, Chitrapriya N, Jang YJ, Kenchappa V. Evaluation of nanoparticle drug-delivery systems used in preclinical studies. Ther Deliv 2021;12:325-36. [PMID: 33759568 DOI: 10.4155/tde-2020-0116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019;16:19. [PMID: 31014371 DOI: 10.1186/s12989-019-0302-8] [Cited by in Crossref: 61] [Cited by in F6Publishing: 42] [Article Influence: 20.3] [Reference Citation Analysis]
121 Delrish E, Jabbarvand M, Ghassemi F, Amoli FA, Atyabi F, Lashay A, Soleimani M, Aghajanpour L, Dinarvand R. Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma. Exp Eye Res 2021;204:108423. [PMID: 33453276 DOI: 10.1016/j.exer.2020.108423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Zhao L, Tang B, Tang P, Sun Q, Suo Z, Zhang M, Gan N, Yang H, Li H. Chitosan/Sulfobutylether-β-Cyclodextrin Nanoparticles for Ibrutinib Delivery: A Potential Nanoformulation of Novel Kinase Inhibitor. Journal of Pharmaceutical Sciences 2020;109:1136-44. [DOI: 10.1016/j.xphs.2019.10.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
123 Zanella D, Bossi E, Gornati R, Faria N, Powell J, Bernardini G. The direct permeation of nanoparticles through the plasma membrane transiently modifies its properties. Biochim Biophys Acta Biomembr 2019;1861:182997. [PMID: 31150635 DOI: 10.1016/j.bbamem.2019.05.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
124 Pinho AS, Seabra CL, Nunes C, Reis S, L Martins MC, Parreira P. Helicobacter pylori biofilms are disrupted by nanostructured lipid carriers: A path to eradication? J Control Release 2022;348:489-98. [PMID: 35654169 DOI: 10.1016/j.jconrel.2022.05.050] [Reference Citation Analysis]
125 Jesus S, Schmutz M, Som C, Borchard G, Wick P, Borges O. Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far. Front Bioeng Biotechnol 2019;7:261. [PMID: 31709243 DOI: 10.3389/fbioe.2019.00261] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
126 Frizzell H, Ohlsen TJ, Woodrow KA. Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics. Int J Pharm 2017;533:99-110. [PMID: 28941831 DOI: 10.1016/j.ijpharm.2017.09.043] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
127 M Ways TM, Lau WM, Khutoryanskiy VV. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers (Basel) 2018;10:E267. [PMID: 30966302 DOI: 10.3390/polym10030267] [Cited by in Crossref: 189] [Cited by in F6Publishing: 150] [Article Influence: 47.3] [Reference Citation Analysis]
128 Bak A, Ashford M, Brayden DJ. Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev 2018;136-137:2-27. [PMID: 30359631 DOI: 10.1016/j.addr.2018.10.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
129 Liu G, Yang J, Wang Y, Liu X, Guan LL, Chen L. Protein-lipid composite nanoparticles for the oral delivery of vitamin B12: Impact of protein succinylation on nanoparticle physicochemical and biological properties. Food Hydrocolloids 2019;92:189-97. [DOI: 10.1016/j.foodhyd.2018.12.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
130 Ramalho MJ, Loureiro JA, Pereira MC. Poly(lactic- co -glycolic acid) Nanoparticles for the Encapsulation and Gastrointestinal Release of Vitamin B9 and Vitamin B12. ACS Appl Nano Mater 2021;4:6881-92. [DOI: 10.1021/acsanm.1c00954] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
131 Tang H, Fang Z, Ng K. Dietary fiber-based colon-targeted delivery systems for polyphenols. Trends in Food Science & Technology 2020;100:333-48. [DOI: 10.1016/j.tifs.2020.04.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
132 Santander-ortega M, Plaza-oliver M, Rodríguez-robledo V, Castro-vázquez L, Villaseca-gonzález N, González-fuentes J, Marcos P, Arroyo-jiménez M, Lozano M. Colloids for drug delivery to the brain. Journal of Drug Delivery Science and Technology 2017;42:193-206. [DOI: 10.1016/j.jddst.2017.07.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
133 Öztürk AA, Yenilmez E, Şenel B, Kıyan HT, Güven UM. Effect of different molecular weight PLGA on flurbiprofen nanoparticles: formulation, characterization, cytotoxicity, and in vivo anti-inflammatory effect by using HET-CAM assay. Drug Development and Industrial Pharmacy 2020;46:682-95. [DOI: 10.1080/03639045.2020.1755304] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
134 Zhang M, Merlin D. Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflamm Bowel Dis 2018;24:1401-15. [PMID: 29788186 DOI: 10.1093/ibd/izy123] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
135 Berrocoso E, Rey-brea R, Fernández-arévalo M, Micó JA, Martín-banderas L. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:2623-32. [DOI: 10.1016/j.nano.2017.07.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
136 Adeoye O, Cabral-marques H. Cyclodextrin nanosystems in oral drug delivery: A mini review. International Journal of Pharmaceutics 2017;531:521-31. [DOI: 10.1016/j.ijpharm.2017.04.050] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 15.0] [Reference Citation Analysis]
137 Jia Z, Guo Z, Yang CT, Prestidge C, Thierry B. "Mucus-on-Chip": A new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus. Int J Pharm 2021;598:120391. [PMID: 33621642 DOI: 10.1016/j.ijpharm.2021.120391] [Reference Citation Analysis]
138 Telange DR, Pandharinath RR, Pethe AM, Jain SP, Pingale PL. Calcium Ion-Sodium Alginate-Piperine-Based Microspheres: Evidence of Enhanced Encapsulation Efficiency, Bio-Adhesion, Controlled Delivery, and Oral Bioavailability of Isoniazid. AAPS PharmSciTech 2022;23:99. [PMID: 35338414 DOI: 10.1208/s12249-022-02236-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Sun X, Zhang S, Ren J, Udenigwe CC. Sialic acid-based strategies for the prevention and treatment of Helicobacter pylori infection: Emerging trends in food industry. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2020.1846157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
140 Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2020;8:1020-44. [PMID: 31621709 DOI: 10.1039/c9bm01378d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
141 Peng K, Shi Y, Labarbiera A, Mitragotri S. Mucoadhesive Ionic Liquid Gel Patches for Oral Delivery. ACS Biomater Sci Eng . [DOI: 10.1021/acsbiomaterials.0c01024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
142 Toth I, Skwarczynski M. Drug Delivery Asia. Curr Drug Deliv 2019;16:586-7. [PMID: 31603052 DOI: 10.2174/156720181607190917091556] [Reference Citation Analysis]
143 Hu S, Li H, Fang Q, Chen N, Hu S, Ye J, Ye X, Wang Y. A core–shell double-layer structured polylactic acid/chitosan delivery system containing large molecular protein. Iran Polym J 2020;29:997-1006. [DOI: 10.1007/s13726-020-00856-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
144 Frizzell H, Woodrow KA. Biomaterial Approaches for Understanding and Overcoming Immunological Barriers to Effective Oral Vaccinations. Adv Funct Mater 2020;30:1907170. [DOI: 10.1002/adfm.201907170] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
145 Tao J, Tan Z, Diao L, Ji Z, Zhu J, Chen W, Hu Y. Co-delivery of dihydroartemisinin and docetaxel in pH-sensitive nanoparticles for treating metastatic breast cancer via the NF-κB/MMP-2 signal pathway. RSC Adv 2018;8:21735-44. [DOI: 10.1039/c8ra02833h] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
146 Primavera R, Palumbo P, Celia C, Cinque B, Carata E, Carafa M, Paolino D, Cifone MG, Di Marzio L, Cilurzo F. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. Eur J Pharm Biopharm 2018;127:432-42. [PMID: 29605467 DOI: 10.1016/j.ejpb.2018.03.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
147 Enea M, Pereira E, Silva DD, Costa J, Soares ME, de Lourdes Bastos M, Carmo H. Study of the intestinal uptake and permeability of gold nanoparticles using both in vitro and in vivo approaches. Nanotechnology 2020;31:195102. [PMID: 31962292 DOI: 10.1088/1361-6528/ab6dfb] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
148 Singh A, Neupane YR, Mangla B, Kohli K. Nanostructured Lipid Carriers for Oral Bioavailability Enhancement of Exemestane: Formulation Design, In Vitro, Ex Vivo, and In Vivo Studies. Journal of Pharmaceutical Sciences 2019;108:3382-95. [DOI: 10.1016/j.xphs.2019.06.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 9.7] [Reference Citation Analysis]
149 Berillo D, Zharkinbekov Z, Kim Y, Raziyeva K, Temirkhanova K, Saparov A. Stimuli-Responsive Polymers for Transdermal, Transmucosal and Ocular Drug Delivery. Pharmaceutics 2021;13:2050. [PMID: 34959332 DOI: 10.3390/pharmaceutics13122050] [Reference Citation Analysis]
150 Youn YS, Bae YH. Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliv Rev 2018;130:3-11. [PMID: 29778902 DOI: 10.1016/j.addr.2018.05.008] [Cited by in Crossref: 155] [Cited by in F6Publishing: 144] [Article Influence: 38.8] [Reference Citation Analysis]
151 Mašková E, Kubová K, Raimi-Abraham BT, Vllasaliu D, Vohlídalová E, Turánek J, Mašek J. Hypromellose - A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release 2020;324:695-727. [PMID: 32479845 DOI: 10.1016/j.jconrel.2020.05.045] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
152 Jia Z, Wignall A, Prestidge C, Thierry B. An ex vivo investigation of the intestinal uptake and translocation of nanoparticles targeted to Peyer's patches microfold cells. Int J Pharm 2021;594:120167. [PMID: 33309559 DOI: 10.1016/j.ijpharm.2020.120167] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
153 Yang M, Zhang F, Yang C, Wang L, Sung J, Garg P, Zhang M, Merlin D. Oral Targeted Delivery by Nanoparticles Enhances Efficacy of an Hsp90 Inhibitor by Reducing Systemic Exposure in Murine Models of Colitis and Colitis-Associated Cancer. J Crohns Colitis 2020;14:130-41. [PMID: 31168612 DOI: 10.1093/ecco-jcc/jjz113] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
154 Pham DT, Tetyczka C, Hartl S, Absenger-novak M, Fröhlich E, Tiyaboonchai W, Roblegg E. Comprehensive investigations of fibroin and poly(ethylenimine) functionalized fibroin nanoparticles for ulcerative colitis treatment. Journal of Drug Delivery Science and Technology 2020;57:101484. [DOI: 10.1016/j.jddst.2019.101484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
155 Tan X, Liu X, Zhang Y, Zhang H, Lin X, Pu C, Gou J, He H, Yin T, Zhang Y, Tang X. Silica nanoparticles on the oral delivery of insulin. Expert Opinion on Drug Delivery 2018;15:805-20. [DOI: 10.1080/17425247.2018.1503250] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
156 Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021;13:5346. [PMID: 34771511 DOI: 10.3390/cancers13215346] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
157 Teruel AH, Gonzalez-Alvarez I, Bermejo M, Merino V, Marcos MD, Sancenon F, Gonzalez-Alvarez M, Martinez-Mañez R. New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. Int J Mol Sci 2020;21:E6502. [PMID: 32899548 DOI: 10.3390/ijms21186502] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
158 Lin X, Wang X, Tian H. Oral delivery of WR-1065 by ROS-responsive PEG-PCL nanoparticles for radioprotection. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;599:124886. [DOI: 10.1016/j.colsurfa.2020.124886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
159 Bielski R, Witczak ZJ, Newport JFL. Carbohydrate-Based Micro/Nanocapsules With Controlled External Surface for Medical Applications. Front Chem 2020;8:545. [PMID: 32676496 DOI: 10.3389/fchem.2020.00545] [Reference Citation Analysis]
160 Zhang S, Asghar S, Yu F, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. The enhancement of N-acetylcysteine on intestinal absorption and oral bioavailability of hydrophobic curcumin. Eur J Pharm Sci 2020;154:105506. [PMID: 32763460 DOI: 10.1016/j.ejps.2020.105506] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
161 Hristov D, McCartney F, Beirne J, Mahon E, Reid S, Bhattacharjee S, Penarier G, Werner U, Bazile D, Brayden DJ. Silica-Coated Nanoparticles with a Core of Zinc, l-Arginine, and a Peptide Designed for Oral Delivery. ACS Appl Mater Interfaces 2020;12:1257-69. [PMID: 31802658 DOI: 10.1021/acsami.9b16104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
162 Ways TMM, Lau WM, Ng KW, Khutoryanskiy VV. Synthesis of thiolated, PEGylated and POZylated silica nanoparticles and evaluation of their retention on rat intestinal mucosa in vitro. Eur J Pharm Sci 2018;122:230-8. [PMID: 29969667 DOI: 10.1016/j.ejps.2018.06.032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
163 Ünal S, Aktaş Y, Benito JM, Bilensoy E. Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. Int J Pharm 2020;584:119468. [PMID: 32470483 DOI: 10.1016/j.ijpharm.2020.119468] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
164 Mitsou E, Pletsa V, Sotiroudis GT, Panine P, Zoumpanioti M, Xenakis A. Development of a microemulsion for encapsulation and delivery of gallic acid. The role of chitosan. Colloids Surf B Biointerfaces 2020;190:110974. [PMID: 32208193 DOI: 10.1016/j.colsurfb.2020.110974] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
165 Lorscheider M, Gaudin A, Nakhlé J, Veiman KL, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv 2021;12:55-76. [PMID: 33307811 DOI: 10.4155/tde-2020-0079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
166 Singh A, Kaur K, Mandal UK, Narang RK. Nanoparticles as Budding Trends in Colon Drug Delivery for the Management of Ulcerative Colitis. CNANOM 2020;10:225-47. [DOI: 10.2174/2468187310999200621200615] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
167 Godara S, Lather V, Kirthanashri SV, Awasthi R, Pandita D. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Mater Sci Eng C Mater Biol Appl 2020;109:110576. [PMID: 32228957 DOI: 10.1016/j.msec.2019.110576] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
168 Nguyen-Trinh QN, Trinh KXT, Trinh NT, Vo VT, Li N, Nagasaki Y, Vong LB. A silica-based antioxidant nanoparticle for oral delivery of Camptothecin which reduces intestinal side effects while improving drug efficacy for colon cancer treatment. Acta Biomater 2022;143:459-70. [PMID: 35235866 DOI: 10.1016/j.actbio.2022.02.036] [Reference Citation Analysis]
169 Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, Verreck G, Csontos I, Nagy ZK, Marosi G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019;296:162-78. [PMID: 30677436 DOI: 10.1016/j.jconrel.2019.01.023] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 12.7] [Reference Citation Analysis]
170 Pham DT, Tiyaboonchai W. Fibroin nanoparticles: a promising drug delivery system. Drug Deliv 2020;27:431-48. [PMID: 32157919 DOI: 10.1080/10717544.2020.1736208] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
171 Wijetunge SS, Wen J, Yeh CK, Sun Y. Wheat germ agglutinin liposomes with surface grafted cyclodextrins as bioadhesive dual-drug delivery nanocarriers to treat oral cells. Colloids Surf B Biointerfaces 2020;185:110572. [PMID: 31654890 DOI: 10.1016/j.colsurfb.2019.110572] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
172 Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. Biomed Res Int 2021;2021:9322282. [PMID: 34746313 DOI: 10.1155/2021/9322282] [Reference Citation Analysis]
173 Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials 2017;147:145-54. [DOI: 10.1016/j.biomaterials.2017.09.022] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
174 Mohan LJ, Daly JS, Ryan BM, Ramtoola Z. The future of nanomedicine in optimising the treatment of inflammatory bowel disease. Scand J Gastroenterol 2019;54:18-26. [PMID: 30678499 DOI: 10.1080/00365521.2018.1563805] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
175 Zhang W, Zheng N, Chen L, Xie L, Cui M, Li S, Xu L. Effect of Shape on Mesoporous Silica Nanoparticles for Oral Delivery of Indomethacin. Pharmaceutics 2018;11:E4. [PMID: 30583601 DOI: 10.3390/pharmaceutics11010004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
176 M Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics 2020;12:E751. [PMID: 32785148 DOI: 10.3390/pharmaceutics12080751] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
177 Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020;40:1715-53. [PMID: 32166776 DOI: 10.1002/med.21668] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
178 Yu M, Song W, Tian F, Dai Z, Zhu Q, Ahmad E, Guo S, Zhu C, Zhong H, Yuan Y, Zhang T, Yi X, Shi X, Gan Y, Gao H. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proc Natl Acad Sci U S A 2019;116:5362-9. [PMID: 30837316 DOI: 10.1073/pnas.1818924116] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 12.3] [Reference Citation Analysis]
179 Chen Z, Zhou D, Zhou S, Jia G. Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague‐Dawley rats. J Appl Toxicol 2018;39:807-19. [DOI: 10.1002/jat.3769] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
180 Mirdamadian SZ, Varshosaz J, Minaiyan M, Taheri A. 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/in vivo study. Int J Biol Macromol 2022:S0141-8130(22)00322-1. [PMID: 35182561 DOI: 10.1016/j.ijbiomac.2022.02.080] [Reference Citation Analysis]
181 Mahato DK, Mishra AK, Kumar P. Nanoencapsulation for Agri-Food Applications and Associated Health and Environmental Concerns. Front Nutr 2021;8:663229. [PMID: 33898505 DOI: 10.3389/fnut.2021.663229] [Reference Citation Analysis]
182 Valdes SA, Alzhrani RF, Lansakara-P DSP, Cui Z. Effect of a Solid Lipid Nanoparticle Formulation on the Bioavailability of 4-(N)-Docosahexaenoyl 2', 2'-Difluorodeoxycytidine After Oral Administration. AAPS PharmSciTech 2020;21:77. [PMID: 31970527 DOI: 10.1208/s12249-020-1617-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
183 Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A. Nanodelivery of phytobioactive compounds for treating aging-associated disorders. Geroscience 2020;42:117-39. [PMID: 31686375 DOI: 10.1007/s11357-019-00116-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
184 McClements DJ, Xiao H, Demokritou P. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Adv Colloid Interface Sci 2017;246:165-80. [PMID: 28552424 DOI: 10.1016/j.cis.2017.05.010] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 15.2] [Reference Citation Analysis]
185 Zhang T, Zhu G, Lu B, Qian Z, Peng Q. Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles. Med Res Rev 2021;41:1835-50. [DOI: 10.1002/med.21767] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
186 Almeida Furquim de Camargo B, Soares Silva DE, Noronha da Silva A, Campos DL, Machado Ribeiro TR, Mieli MJ, Borges Teixeira Zanatta M, Bento da Silva P, Pavan FR, Gallina Moreira C, Resende FA, Menegário AA, Chorilli M, Vieira de Godoy Netto A, Bauab TM. New Silver(I) Coordination Compound Loaded into Polymeric Nanoparticles as a Strategy to Improve In Vitro Anti- Helicobacter pylori Activity. Mol Pharmaceutics 2020;17:2287-98. [DOI: 10.1021/acs.molpharmaceut.9b01264] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
187 Das S, Kaur S, Rai VK. Gastro-retentive drug delivery systems: a recent update on clinical pertinence and drug delivery. Drug Deliv Transl Res 2021;11:1849-77. [PMID: 33403646 DOI: 10.1007/s13346-020-00875-5] [Reference Citation Analysis]
188 Li R, Laurent F, Taverner A, Mackay J, De Bank PA, Mrsny RJ. Intestinal Transcytosis of a Protein Cargo and Nanoparticles Mediated by a Non-Toxic Form of Pseudomonas aeruginosa Exotoxin A. Pharmaceutics 2021;13:1171. [PMID: 34452131 DOI: 10.3390/pharmaceutics13081171] [Reference Citation Analysis]
189 Ma C, Wei T, Hua Y, Wang Z, Zhang L. Effective Antitumor of Orally Intestinal Targeting Penetrating Peptide-Loaded Tyroserleutide/PLGA Nanoparticles in Hepatocellular Carcinoma. Int J Nanomedicine 2021;16:4495-513. [PMID: 34239301 DOI: 10.2147/IJN.S315713] [Reference Citation Analysis]