1 |
Zhong Y, Zheng XT, Li QL, Loh XJ, Su X, Zhao S. Antibody conjugated Au/Ir@Cu/Zn-MOF probe for bacterial lateral flow immunoassay and precise synergistic antibacterial treatment. Biosens Bioelectron 2023;224:115033. [PMID: 36621082 DOI: 10.1016/j.bios.2022.115033] [Reference Citation Analysis]
|
2 |
Perwez M, Lau SY, Hussain D, Anboo S, Arshad M, Thakur P. Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids Surf B Biointerfaces 2023;225:113241. [PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241] [Reference Citation Analysis]
|
3 |
Luo X, Zhao J, Li M, Zhao X, Wei X, Luo Z, Gu W, Du D, Lin Y, Zhu C. Single-atom materials for food safety. Materials Today 2023. [DOI: 10.1016/j.mattod.2023.02.010] [Reference Citation Analysis]
|
4 |
Shan J, Che J, Song C, Zhao Y. Emerging antibacterial nanozymes for wound healing. Smart Medicine 2023. [DOI: 10.1002/smmd.20220025] [Reference Citation Analysis]
|
5 |
Gong Z, Wang J, Shao S, Fan B, Shi Y, Qian L, Lu K, Gao S. H2O2 activation over Cu-Schiff bases nanozyme for the removal of amlodipine: Kinetics, mechanism and toxicity evaluation. Separation and Purification Technology 2023. [DOI: 10.1016/j.seppur.2023.123329] [Reference Citation Analysis]
|
6 |
Xin G, Zhai Y, Xing Y, Sun W, Liu J, Hu W, Song J, Bunlin C, Zhang B, Liu X. An asymmetric supercapacitor with ultra-high energy density and long cycle life based on La(OH)3 nano-spindles and nano-rods anchored on reduced graphene oxide. Journal of Alloys and Compounds 2023. [DOI: 10.1016/j.jallcom.2023.169345] [Reference Citation Analysis]
|
7 |
Jiang B, Guo Z, Liang M. Recent progress in single-atom nanozymes research. Nano Res 2023;16:1878-89. [PMID: 36118987 DOI: 10.1007/s12274-022-4856-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Sun Y, Xu B, Pan X, Wang H, Wu Q, Li S, Jiang B, Liu H. Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication. Coordination Chemistry Reviews 2023;475:214896. [DOI: 10.1016/j.ccr.2022.214896] [Reference Citation Analysis]
|
9 |
Yu Y, Pan M, Jiang M, Yu X, Xu L. Facile synthesis of self-assembled three-dimensional flower-like Cu-MOF and its pyrolytic derivative Cu-N-C450 for diverse applications. Journal of Environmental Chemical Engineering 2023. [DOI: 10.1016/j.jece.2023.109400] [Reference Citation Analysis]
|
10 |
Zhong Y, Zheng XT, Zhao S, Su X, Loh XJ. Stimuli-Activable Metal-Bearing Nanomaterials and Precise On-Demand Antibacterial Strategies. ACS Nano 2022;16:19840-72. [PMID: 36441973 DOI: 10.1021/acsnano.2c08262] [Reference Citation Analysis]
|
11 |
Wang Q, Luo Z, Wu Y, Li Z. Recent Advances in Enzyme‐Based Biomaterials Toward Diabetic Wound Healing. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200110] [Reference Citation Analysis]
|
12 |
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022;17:5947-90. [PMID: 36510620 DOI: 10.2147/IJN.S382796] [Reference Citation Analysis]
|
13 |
Li X, Xu Y, Ouyang D, Ye K, Chen Y, Li Q, Xia Q, Wu X, Yang Y. Copper- and Iodine-Doped Nanozymes with Simulated Enzyme Activity and Efficient Antifungal Activity against Candida albicans. Biochemical Engineering Journal 2022. [DOI: 10.1016/j.bej.2022.108791] [Reference Citation Analysis]
|
14 |
Shen B, Li W, Wang Y, Cheng S, Wang X, Zhu L, Zhang Y, Gao L, Jiang L. Rapid capture and killing of bacteria by lyophilized nFeS-Hydrogel for improved healing of infected wounds. Biomater Adv 2022;144:213207. [PMID: 36446252 DOI: 10.1016/j.bioadv.2022.213207] [Reference Citation Analysis]
|
15 |
Li X, Luo S, Chen Y, Zuo Y, Huang Y, Zhang H, Chen L, Feng J, Zhu J, Xue W. Facile One-Pot Synthesis of Meteor Hammer-like Au-MnOx Nanozymes with Spiky Surface for NIR-II Light-Enhanced Bacterial Elimination. Chem Mater 2022. [DOI: 10.1021/acs.chemmater.2c01775] [Reference Citation Analysis]
|
16 |
Sun G, Jiang X, Liu C, Song S, Zhang J, Shen J. FeS@LAB-35@Ti3C2 as a high-efficiency nanozyme for near infrared light induced photothermal enhanced chemodynamic antibacterial activity and wound healing. Nano Res . [DOI: 10.1007/s12274-022-4965-3] [Reference Citation Analysis]
|
17 |
Liao G, Zhang L, Li C, Liu S, Fang B, Yang H. Emerging carbon-supported single-atom catalysts for biomedical applications. Matter 2022;5:3341-3374. [DOI: 10.1016/j.matt.2022.07.031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Chen L, Zhang D, Cheng K, Li W, Yu Q, Wang L. Photothermal-responsive fiber dressing with enhanced antibacterial activity and cell manipulation towards promoting wound‐healing. Journal of Colloid and Interface Science 2022;623:21-33. [DOI: 10.1016/j.jcis.2022.05.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
19 |
Li Y, Chen Y, Li P, Wang G, Wei J. Controllable Deposition of Ag Nanoparticles on Various Substrates via Interfacial Polyphenol Reduction Strategy for Antibacterial Application. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130287] [Reference Citation Analysis]
|
20 |
Wahab MA, Hossain SMA, Masud MK, Park H, Ashok A, Mustapić M, Kim M, Patel D, Shahbazi M, Hossain MSA, Yamauchi Y, Kaneti YV. Nanoarchitectured superparamagnetic iron oxide-doped mesoporous carbon nanozymes for glucose sensing. Sensors and Actuators B: Chemical 2022;366:131980. [DOI: 10.1016/j.snb.2022.131980] [Reference Citation Analysis]
|
21 |
Ma Y, Jiang K, Chen H, Shi Q, Liu H, Zhong X, Qian H, Chen X, Cheng L, Wang X. Liquid exfoliation of V8C7 nanodots as peroxidase-like nanozymes for photothermal-catalytic synergistic antibacterial treatment. Acta Biomater 2022:S1742-7061(22)00370-1. [PMID: 35779771 DOI: 10.1016/j.actbio.2022.06.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
22 |
Li P, Feng Y, Cheng D, Wei J. Self-template synthesis of mesoporous vanadium oxide nanospheres with intrinsic peroxidase-like activity and high antibacterial performance. J Colloid Interface Sci 2022;625:435-45. [PMID: 35724466 DOI: 10.1016/j.jcis.2022.06.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Feng Y, Chen F, Rosenholm JM, Liu L, Zhang H. Efficient nanozyme engineering for antibacterial therapy. Mater Futures 2022;1:023502. [DOI: 10.1088/2752-5724/ac7068] [Reference Citation Analysis]
|
24 |
Zhu J, Li Q, Li X, Wu X, Yuan T, Yang Y. Simulated Enzyme Activity and Efficient Antibacterial Activity of Copper-Doped Single-Atom Nanozymes. Langmuir 2022. [PMID: 35617453 DOI: 10.1021/acs.langmuir.2c00155] [Reference Citation Analysis]
|
25 |
Zhang J, Li Z, Li H, Dai G, Luo F, Chu Z, Geng X, Zhang F, Wang Q. Construction of Pd Single Site Anchored on Nitrogen-Doped Porous Carbon and Its Application for Total Antioxidant Level Detection. Nanoscale Res Lett 2022;17:54. [PMID: 35596011 DOI: 10.1186/s11671-022-03693-5] [Reference Citation Analysis]
|
26 |
Qi P, Zhang J, Bao Z, Liao Y, Liu Z, Wang J. A Platelet-Mimicking Single-Atom Nanozyme for Mitochondrial Damage-Mediated Mild-Temperature Photothermal Therapy. ACS Appl Mater Interfaces 2022;14:19081-90. [PMID: 35442630 DOI: 10.1021/acsami.1c22346] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
27 |
Chen X, Feng M, Xie X, Zhang Y, Zhang J, Yang X. Fe single atoms anchored on fluorine-doped ultrathin carbon nanosheets for sensitive colorimetric detection of p-phenylenediamine. Talanta 2022;246:123487. [PMID: 35487013 DOI: 10.1016/j.talanta.2022.123487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
|
29 |
Nan F, Jia Q, Xue X, Wang S, Liu W, Wang J, Ge J, Wang P. Iron phthalocyanine-derived nanozyme as dual reactive oxygen species generation accelerator for photothermally enhanced tumor catalytic therapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
30 |
Zhou C, Wang Q, Jiang J, Gao L. Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance. Antibiotics 2022;11:390. [DOI: 10.3390/antibiotics11030390] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
|
31 |
Han H, Xu X, Kan H, Tang Y, Liu C, Wen H, Wu L, Jiang Y, Wang Z, Liu J, Wang F. Synergistic photodynamic/photothermal bacterial inactivation over heterogeneous quaternized chitosan/silver/cobalt phosphide nanocomposites. J Colloid Interface Sci 2022;616:304-15. [PMID: 35219196 DOI: 10.1016/j.jcis.2022.02.068] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
32 |
Su Y, Ding M, Dong H, Hu Y, Yang D, Shao J, Huang B. Recent advances in nanozymes for combating bacterial infection. Mater Chem Front . [DOI: 10.1039/d2qm00511e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|