BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gupta A, Mishra A, Puri N. Peptide nucleic acids: Advanced tools for biomedical applications. J Biotechnol 2017;259:148-59. [PMID: 28764969 DOI: 10.1016/j.jbiotec.2017.07.026] [Cited by in Crossref: 91] [Cited by in F6Publishing: 94] [Article Influence: 15.2] [Reference Citation Analysis]
Number Citing Articles
1 Shen A, Zhang L, Xie Y, Zhu X, Hu J, Liu S. Engineering discrete synthetic macromolecules for biomedical applications. Nano Today 2023;48:101728. [DOI: 10.1016/j.nantod.2022.101728] [Reference Citation Analysis]
2 Chubarov AS, Oscorbin IP, Novikova LM, Filipenko ML, Lomzov AA, Pyshnyi DV. Allele-Specific PCR for PIK3CA Mutation Detection Using Phosphoryl Guanidine Modified Primers. Diagnostics (Basel) 2023;13. [PMID: 36673060 DOI: 10.3390/diagnostics13020250] [Reference Citation Analysis]
3 Robles-remacho A, Luque-gonzalez MA, López-delgado FJ, Guardia-monteagudo JJ, Fara MA, Pernagallo S, Sanchez-martin RM, Diaz-mochon JJ. Direct detection of alpha satellite DNA with single-base resolution by using abasic Peptide Nucleic Acids and Fluorescent in situ Hybridization. Biosensors and Bioelectronics 2023;219:114770. [DOI: 10.1016/j.bios.2022.114770] [Reference Citation Analysis]
4 Soler M, Huertas CS. Label-Free Plasmonic Biosensors in Clinical Diagnostics. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00119-9] [Reference Citation Analysis]
5 Yokoi Y, Kawabuchi Y, Zulmajdi AA, Tanaka R, Shibata T, Muraoka T, Mori T. Cell-Penetrating Peptide-Peptide Nucleic Acid Conjugates as a Tool for Protein Functional Elucidation in the Native Bacterium. Molecules 2022;27. [PMID: 36558072 DOI: 10.3390/molecules27248944] [Reference Citation Analysis]
6 He P, Zhang X, Xia K, Green DE, Baytas S, Xu Y, Pham T, Liu J, Zhang F, Almond A, Linhardt RJ, DeAngelis PL. Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors. Nat Commun 2022;13:7438. [PMID: 36460670 DOI: 10.1038/s41467-022-34788-3] [Reference Citation Analysis]
7 Soni GK, Saima, Manhas P, Sharma RK. Peptide-based optical biosensors: A promising approach for early-stage cancer detection. Biosensors and Bioelectronics: X 2022;12:100259. [DOI: 10.1016/j.biosx.2022.100259] [Reference Citation Analysis]
8 Goodman J, Attwood D, Kiely J, Coladas Mato P, Luxton R. Modeling Peptide Nucleic Acid Binding Enthalpies Using MM-GBSA. J Phys Chem B 2022;126:9528-38. [PMID: 36375178 DOI: 10.1021/acs.jpcb.2c05547] [Reference Citation Analysis]
9 Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella DH. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. Nucleic Acids Res 2022:gkac864. [PMID: 36215040 DOI: 10.1093/nar/gkac864] [Reference Citation Analysis]
10 Wittmann C. DNA Immobilization. Encyclopedia of Analytical Chemistry 2022. [DOI: 10.1002/9780470027318.a9210.pub2] [Reference Citation Analysis]
11 Massaro M, Licandro E, Cauteruccio S, Lazzara G, Liotta LF, Notarbartolo M, Raymo FM, Sánchez-espejo R, Viseras-iborra C, Riela S. Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids. Journal of Colloid and Interface Science 2022;620:221-33. [DOI: 10.1016/j.jcis.2022.03.151] [Reference Citation Analysis]
12 Tjandra KC, Ram-mohan N, Abe R, Hashemi MM, Lee J, Chin SM, Roshardt MA, Liao JC, Wong PK, Yang S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics 2022;11:511. [DOI: 10.3390/antibiotics11040511] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Patil NA, Thombare VJ, Li R, He X, Lu J, Yu HH, Wickremasinghe H, Pamulapati K, Azad MAK, Velkov T, Roberts KD, Li J. An Efficient Approach for the Design and Synthesis of Antimicrobial Peptide-Peptide Nucleic Acid Conjugates. Front Chem 2022;10:843163. [DOI: 10.3389/fchem.2022.843163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Economos NG, Quijano E, Carufe KEW, Perera JDR, Glazer PM. Antispacer peptide nucleic acids for sequence-specific CRISPR-Cas9 modulation. Nucleic Acids Res 2022:gkac095. [PMID: 35235944 DOI: 10.1093/nar/gkac095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li C, Callahan AJ, Phadke KS, Bellaire B, Farquhar CE, Zhang G, Schissel CK, Mijalis AJ, Hartrampf N, Loas A, Verhoeven DE, Pentelute BL. Automated Flow Synthesis of Peptide-PNA Conjugates. ACS Cent Sci 2022;8:205-13. [PMID: 35233452 DOI: 10.1021/acscentsci.1c01019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gaddam RR, Dhuri K, Kim YR, Jacobs JS, Kumar V, Li Q, Irani K, Bahal R, Vikram A. γ Peptide Nucleic Acid-Based miR-122 Inhibition Rescues Vascular Endothelial Dysfunction in Mice Fed a High-Fat Diet. J Med Chem 2022. [PMID: 35133835 DOI: 10.1021/acs.jmedchem.1c01831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wang F, Li P, Chu HC, Lo PK. Nucleic Acids and Their Analogues for Biomedical Applications. Biosensors (Basel) 2022;12:93. [PMID: 35200353 DOI: 10.3390/bios12020093] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
18 Lou H, Li X, Sheng X, Fang S, Wan S, Sun A, Chen H. Development of a Trivalent Construct Omp18/AhpC/FlgH Multi Epitope Peptide Vaccine Against Campylobacter jejuni. Front Microbiol 2021;12:773697. [PMID: 35095793 DOI: 10.3389/fmicb.2021.773697] [Reference Citation Analysis]
19 Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd – stabilisation, structure, and applications of DNA triplexes. Chem Sci . [DOI: 10.1039/d2sc01793h] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Maurya R, Gohil N, Bhattacharjee G, Lam NL, Alzahrani KJ, Singh V. Recent development and applications of xeno nucleic acids. New Frontiers and Applications of Synthetic Biology 2022. [DOI: 10.1016/b978-0-12-824469-2.00019-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021;50:13012-89. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 De Fazio AF, Misatziou D, Baker YR, Muskens OL, Brown T, Kanaras AG. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem Soc Rev 2021;50:13410-40. [PMID: 34792047 DOI: 10.1039/d1cs00632k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Wdowikowska A, Janicka M. Antisense oligonucleotide technology as a research tool in plant biology. Funct Plant Biol 2021. [PMID: 34794541 DOI: 10.1071/FP21194] [Reference Citation Analysis]
24 Thakare P, Vasile F, Vallaro M, Visentin S, Caron G, Licandro E, Cauteruccio S. Acid-base and lipophilic properties of peptide nucleic acid derivatives. J Pharm Anal 2021;11:638-45. [PMID: 34765277 DOI: 10.1016/j.jpha.2020.07.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Exner RM, Paisey SJ, Redman JE, Pascu SI. Explorations into Peptide Nucleic Acid Contrast Agents as Emerging Scaffolds for Breakthrough Solutions in Medical Imaging and Diagnosis. ACS Omega 2021;6:28455-62. [PMID: 34746541 DOI: 10.1021/acsomega.1c03994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
26 Malarney KP, Kc S, Schmidt VA. Recent strategies used in the synthesis of saturated four-membered heterocycles. Org Biomol Chem 2021;19:8425-41. [PMID: 34546272 DOI: 10.1039/d1ob00988e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
28 Addonizio CJ, Gates BD, Webber MJ. Supramolecular "Click Chemistry" for Targeting in the Body. Bioconjug Chem 2021;32:1935-46. [PMID: 34415139 DOI: 10.1021/acs.bioconjchem.1c00326] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
29 Reynoso EC, Laschi S, Palchetti I, Torres E. Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. Chemosensors 2021;9:232. [DOI: 10.3390/chemosensors9080232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Swenson CS, Lackey HH, Reece EJ, Harris JM, Heemstra JM, Peterson EM. Evaluating the effect of ionic strength on PNA:DNA duplex formation kinetics. RSC Chem Biol 2021;2:1249-56. [PMID: 34458838 DOI: 10.1039/d1cb00025j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021;17:1641-88. [PMID: 34367346 DOI: 10.3762/bjoc.17.116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
32 Luchian T, Mereuta L, Park Y, Asandei A, Schiopu I. Single-molecule, hybridization-based strategies for short nucleic acids detection and recognition with nanopores. Proteomics 2021;:e2100046. [PMID: 34275186 DOI: 10.1002/pmic.202100046] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Bizot F, Vulin A, Goyenvalle A. Current Status of Antisense Oligonucleotide-Based Therapy in Neuromuscular Disorders. Drugs 2020;80:1397-415. [PMID: 32696107 DOI: 10.1007/s40265-020-01363-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
34 Corvaglia V, Ait Mohamed Amar I, Garambois V, Letast S, Garcin A, Gongora C, Del Rio M, Denevault-Sabourin C, Joubert N, Huc I, Pourquier P. Internalization of Foldamer-Based DNA Mimics through a Site-Specific Antibody Conjugate to Target HER2-Positive Cancer Cells. Pharmaceuticals (Basel) 2021;14:624. [PMID: 34203395 DOI: 10.3390/ph14070624] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
35 Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BCSJ 2021;94:1737-56. [DOI: 10.1246/bcsj.20210086] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
36 Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021;16:3348-81. [PMID: 34127865 DOI: 10.1038/s41596-021-00540-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
37 Solomon JP, Arcila ME. Molecular Diagnostics of Non-Hodgkin Lymphoma. Cancer J 2020;26:186-94. [PMID: 32496452 DOI: 10.1097/PPO.0000000000000447] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Li W, Cai Y, Yang Y, Miao J, Xu Y. Novel electrochemical nuclear factorkappa B biosensor via analyte-restrained peptide nucleic acid displacement reaction constructed on different gold nanoparticle-deposited carbon electrodes. Sensors and Actuators B: Chemical 2021;335:129702. [DOI: 10.1016/j.snb.2021.129702] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
39 Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R. Nanoparticle Delivered Anti-miR-141-3p for Stroke Therapy. Cells 2021;10:1011. [PMID: 33922958 DOI: 10.3390/cells10051011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
40 Tang Z, Zhao J, Pearson ZJ, Boskovic ZV, Wang J. RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules 2021;26:2263. [PMID: 33919699 DOI: 10.3390/molecules26082263] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
41 Dragomir IS, Asandei A, Schiopu I, Bucataru IC, Mereuta L, Luchian T. The Nanopore-Tweezing-Based, Targeted Detection of Nucleobases on Short Functionalized Peptide Nucleic Acid Sequences. Polymers (Basel) 2021;13:1210. [PMID: 33918592 DOI: 10.3390/polym13081210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Yukhet P, Buddhachat K, Vilaivan T, Suparpprom C. Isothermal Detection of Canine Blood Parasite (Ehrlichia canis) Utilizing Recombinase Polymerase Amplification Coupled with Graphene Oxide Quenching-Based Pyrrolidinyl Peptide Nucleic Acid. Bioconjug Chem 2021;32:523-32. [PMID: 33651604 DOI: 10.1021/acs.bioconjchem.0c00639] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Bush J, Hu C, Veneziano R. Mechanical Properties of DNA Hydrogels: Towards Highly Programmable Biomaterials. Applied Sciences 2021;11:1885. [DOI: 10.3390/app11041885] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
44 Crisci T, Falanga AP, Casalino M, Borbone N, Terracciano M, Chianese G, Gioffrè M, D'Errico S, Marzano M, Rea I, De Stefano L, Oliviero G. Bioconjugation of a PNA Probe to Zinc Oxide Nanowires for Label-Free Sensing. Nanomaterials (Basel) 2021;11:523. [PMID: 33670746 DOI: 10.3390/nano11020523] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Volpi S, Rozzi A, Rivi N, Neri M, Knoll W, Corradini R. Submonomeric Strategy with Minimal Protection for the Synthesis of C(2)-Modified Peptide Nucleic Acids. Org Lett 2021;23:902-7. [PMID: 33417460 DOI: 10.1021/acs.orglett.0c04116] [Reference Citation Analysis]
46 Lai Q, Dong B, Nie K, Shi H, Liang B, Liu Z. Synthesis and Characterisation of Photolabile SPhNPPOC-Protected (R)-MiniPEG Containing Chiral γ-Peptide Nucleic Acid Monomers. Aust J Chem 2021;74:199. [DOI: 10.1071/ch20017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Tewari A, Jain B, Brar B, Prasad G, Prasad M. Biosensors: Modern Tools for Disease Diagnosis and Animal Health Monitoring. Concepts and Strategies in Plant Sciences 2021. [DOI: 10.1007/978-3-030-66165-6_18] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Volpi S, Cancelli U, Neri M, Corradini R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals (Basel) 2020;14:14. [PMID: 33375595 DOI: 10.3390/ph14010014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
49 Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020;25:E5963. [PMID: 33339365 DOI: 10.3390/molecules25245963] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
50 Galindo-Murillo R, Cohen JS, Akabayov B. Molecular dynamics simulations of acyclic analogs of nucleic acids for antisense inhibition. Mol Ther Nucleic Acids 2021;23:527-35. [PMID: 33510941 DOI: 10.1016/j.omtn.2020.11.023] [Reference Citation Analysis]
51 Moccia M, Antonacci A, Saviano M, Caratelli V, Arduini F, Scognamiglio V. Emerging technologies in the design of peptide nucleic acids (PNAs) based biosensors. TrAC Trends in Analytical Chemistry 2020;132:116062. [DOI: 10.1016/j.trac.2020.116062] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
52 Chubarov AS, Oscorbin IP, Filipenko ML, Lomzov AA, Pyshnyi DV. Allele-Specific PCR for KRAS Mutation Detection Using Phosphoryl Guanidine Modified Primers. Diagnostics (Basel) 2020;10:E872. [PMID: 33114622 DOI: 10.3390/diagnostics10110872] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
53 Montazersaheb S, Avci ÇB, Bagca BG, Ay NPO, Tarhriz V, Nielsen PE, Charoudeh HN, Hejazi MS. Targeting TdT gene expression in Molt-4 cells by PNA-octaarginine conjugates. Int J Biol Macromol 2020;164:4583-90. [PMID: 32941907 DOI: 10.1016/j.ijbiomac.2020.09.081] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
54 Singh KR, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. Eng Rep 2020;:e12238. [PMID: 32838227 DOI: 10.1002/eng2.12238] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
55 Zhao X, Wu C. Recent Advances in Peptide Nucleic Acids for Rapid Detection of Foodborne Pathogens. Food Anal Methods 2020;13:1956-72. [DOI: 10.1007/s12161-020-01811-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
56 Lundin KE, Gissberg O, Smith CIE, Zain R. Chemical Development of Therapeutic Oligonucleotides. Methods Mol Biol 2019;2036:3-16. [PMID: 31410788 DOI: 10.1007/978-1-4939-9670-4_1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
57 Jiang Z, Thayumanavan S. Non-cationic Material Design for Nucleic Acid Delivery. Adv Ther (Weinh) 2020;3:1900206. [PMID: 34164572 DOI: 10.1002/adtp.201900206] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
58 Swenson CS, Heemstra JM. Peptide nucleic acids harness dual information codes in a single molecule. Chem Commun (Camb) 2020;56:1926-35. [PMID: 32009137 DOI: 10.1039/c9cc09905k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
59 Wojciechowska M, Równicki M, Mieczkowski A, Miszkiewicz J, Trylska J. Antibacterial Peptide Nucleic Acids-Facts and Perspectives. Molecules 2020;25:E559. [PMID: 32012929 DOI: 10.3390/molecules25030559] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
60 Vacek J, Ostatná V. Bioelektrochemie. 2020. [DOI: 10.5507/lf.20.24457635] [Reference Citation Analysis]
61 Charoenpakdee C, Vilaivan T. Quenching of fluorescently labeled pyrrolidinyl peptide nucleic acid by oligodeoxyguanosine and its application in DNA sensing. Org Biomol Chem 2020;18:5951-62. [DOI: 10.1039/d0ob01299h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
62 Dai Y, Furst A, Liu CC. Strand Displacement Strategies for Biosensor Applications. Trends in Biotechnology 2019;37:1367-82. [DOI: 10.1016/j.tibtech.2019.10.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
63 Corvaglia V, Carbajo D, Prabhakaran P, Ziach K, Mandal PK, Santos VD, Legeay C, Vogel R, Parissi V, Pourquier P, Huc I. Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificial analogues of DNA mimic proteins. Nucleic Acids Res 2019;47:5511-21. [PMID: 31073604 DOI: 10.1093/nar/gkz352] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
64 Basavalingappa V, Bera S, Xue B, Azuri I, Tang Y, Tao K, Shimon LJW, Sawaya MR, Kolusheva S, Eisenberg DS, Kronik L, Cao Y, Wei G, Gazit E. Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nat Commun 2019;10:5256. [PMID: 31748568 DOI: 10.1038/s41467-019-13250-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
65 Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced Evanescent-Wave Optical Biosensors for the Detection of Nucleic Acids: An Analytic Perspective. Front Chem 2019;7:724. [PMID: 31709240 DOI: 10.3389/fchem.2019.00724] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 14.0] [Reference Citation Analysis]
66 Hudson RHE, Heidari A, Martin-Chan T, Park G, Wisner JA. On the Necessity of Nucleobase Protection for 2-Thiouracil for Fmoc-Based Pseudo-Complementary Peptide Nucleic Acid Oligomer Synthesis. J Org Chem 2019;84:13252-61. [PMID: 31547656 DOI: 10.1021/acs.joc.9b00821] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
67 Jasiński M, Miszkiewicz J, Feig M, Trylska J. Thermal Stability of Peptide Nucleic Acid Complexes. J Phys Chem B 2019;123:8168-77. [PMID: 31491077 DOI: 10.1021/acs.jpcb.9b05168] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
68 Piacenti V, Langella E, Autiero I, Nolan JC, Piskareva O, Adamo MFA, Saviano M, Moccia M. A combined experimental and computational study on peptide nucleic acid (PNA) analogues of tumor suppressive miRNA-34a. Bioorg Chem 2019;91:103165. [PMID: 31419642 DOI: 10.1016/j.bioorg.2019.103165] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
69 Kolpashchikov DM. Evolution of Hybridization Probes to DNA Machines and Robots. Acc Chem Res 2019;52:1949-56. [PMID: 31243970 DOI: 10.1021/acs.accounts.9b00098] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
70 Soler-Bistué A, Zorreguieta A, Tolmasky ME. Bridged Nucleic Acids Reloaded. Molecules 2019;24:E2297. [PMID: 31234313 DOI: 10.3390/molecules24122297] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
71 Lai WF, Lin M, Wong WT. Tackling Aging by Using miRNA as a Target and a Tool. Trends Mol Med 2019;25:673-84. [PMID: 31126873 DOI: 10.1016/j.molmed.2019.04.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
72 Dong B, Nie K, Shi H, Yao X, Chao L, Liang B, Liu Z. Synthesis and characterization of (R)-miniPEG-containing chiral γ-peptide nucleic acids using the Fmoc strategy. Tetrahedron Letters 2019;60:1430-1433. [DOI: 10.1016/j.tetlet.2019.04.038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
73 Cauteruccio S, Licandro E, Panigati M, D'alfonso G, Maiorana S. Modifying the properties of organic molecules by conjugation with metal complexes: The case of peptide nucleic acids and of the intrinsically chiral thiahelicenes. Coordination Chemistry Reviews 2019;386:119-37. [DOI: 10.1016/j.ccr.2019.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
74 Cauteruccio S, Panigati M, Veronese L, Zaffaroni N, Folini M, Licandro E. Luminescent dinuclear rhenium(I) PNA conjugates for microRNA-21 targeting: Synthesis, chemico-physical and biological characterization. Journal of Organometallic Chemistry 2019;887:32-9. [DOI: 10.1016/j.jorganchem.2019.02.020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
75 Dong B, Nie K, Shi H, Chao L, Ma M, Gao F, Liang B, Chen W, Long M, Liu Z. Film-Spotting chiral miniPEG-γPNA array for BRCA1 gene mutation detection. Biosens Bioelectron 2019;136:1-7. [PMID: 31026759 DOI: 10.1016/j.bios.2019.04.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
76 Sęk S, Vacek J, Dorčák V. Electrochemistry of peptides. Current Opinion in Electrochemistry 2019;14:166-72. [DOI: 10.1016/j.coelec.2019.03.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
77 Fujimoto K, Yang-Chun H, Nakamura S. Strong Inhibitory Effects of Antisense Probes on Gene Expression through Ultrafast RNA Photocrosslinking. Chem Asian J 2019;14:1912-6. [PMID: 30806028 DOI: 10.1002/asia.201801917] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
78 Gasparello J, Manicardi A, Casnati A, Corradini R, Gambari R, Finotti A, Sansone F. Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Sci Rep 2019;9:3036. [PMID: 30816154 DOI: 10.1038/s41598-019-39211-4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
79 Ikonnikova AY, Surzhikov SA, Pozhitnova VO, Zasedatelev AS, Nasedkina TV. 2'-O-Methyl Oligoribonucleotide Analogs Used to Change the Temperature Characteristics of Immobilized Probes and to Enhance the Specificity of Hybridization. BIOPHYSICS 2018;63:876-9. [DOI: 10.1134/s0006350918060118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
80 Falanga AP, Cerullo V, Marzano M, Feola S, Oliviero G, Piccialli G, Borbone N. Peptide Nucleic Acid-Functionalized Adenoviral Vectors Targeting G-Quadruplexes in the P1 Promoter of Bcl-2 Proto-Oncogene: A New Tool for Gene Modulation in Anticancer Therapy. Bioconjug Chem 2019;30:572-82. [PMID: 30620563 DOI: 10.1021/acs.bioconjchem.8b00674] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
81 Lyalina TA, Goncharova EA, Prokofeva NY, Voroshilina ES, Kolpashchikov DM. A DNA minimachine for selective and sensitive detection of DNA. Analyst 2019;144:416-20. [DOI: 10.1039/c8an02274g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
82 Pereira A, Sales M, Rodrigues L. Biosensors for Rapid Detection of Breast Cancer Biomarkers. Advanced Biosensors for Health Care Applications 2019. [DOI: 10.1016/b978-0-12-815743-5.00003-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
83 Lai W. Use of delivery technologies to manipulate miRNA expression. Delivery of Therapeutics for Biogerontological Interventions 2019. [DOI: 10.1016/b978-0-12-816485-3.00009-x] [Reference Citation Analysis]
84 Langel Ü. Methods for CPP Functionalization. CPP, Cell-Penetrating Peptides 2019. [DOI: 10.1007/978-981-13-8747-0_3] [Reference Citation Analysis]
85 Sabale PM, Ambi UB, Srivatsan SG. Clickable PNA Probes for Imaging Human Telomeres and Poly(A) RNAs. ACS Omega 2018;3:15343-52. [PMID: 30556003 DOI: 10.1021/acsomega.8b02550] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
86 Sugimoto S, Maeda H, Kitamatsu M, Nishikawa I, Shida M. Selective growth inhibition of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by antisense peptide nucleic acids. Mol Cell Probes 2019;43:45-9. [PMID: 30471338 DOI: 10.1016/j.mcp.2018.11.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
87 Shri Mall V, Prasad Ojha R, Kumar Tiwari R. Recombinant Triplex formed by PNA-TFO: A Molecular Dynamics Simulation Study. Orient J Chem 2018;34:2440-2446. [DOI: 10.13005/ojc/340528] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
88 Jiménez-meneses P, Bañuls M, Puchades R, Maquieira Á. Fluor-thiol Photocoupling Reaction for Developing High Performance Nucleic Acid (NA) Microarrays. Anal Chem 2018;90:11224-31. [DOI: 10.1021/acs.analchem.8b00265] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
89 Flamme M, Clarke E, Gasser G, Hollenstein M. Applications of Ruthenium Complexes Covalently Linked to Nucleic Acid Derivatives. Molecules 2018;23:E1515. [PMID: 29932443 DOI: 10.3390/molecules23071515] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
90 Jasiński M, Feig M, Trylska J. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters. J Chem Theory Comput 2018;14:3603-20. [PMID: 29791152 DOI: 10.1021/acs.jctc.8b00291] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
91 Cheng D, Qiao L, Horvatovich P. Toward Spectral Library-Free Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Bacterial Identification. J Proteome Res 2018;17:2124-30. [PMID: 29749232 DOI: 10.1021/acs.jproteome.8b00065] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
92 Kadam VN, Saikrishnan K, Ganesh KN. 5-Amidodansyl-U (U D ) Peptide Nucleic Acid (PNA) as a Fluorescent Sensor of the Local Dielectric Constant (ε) in PNA Duplexes: Major Grooves in PNA Duplexes Are More Hydrophobic Than Major Grooves in DNA–DNA Duplexes. J Phys Chem C 2018;122:14004-13. [DOI: 10.1021/acs.jpcc.8b01098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
93 Aupy P, Echevarría L, Relizani K, Goyenvalle A. The Use of Tricyclo-DNA Oligomers for the Treatment of Genetic Disorders. Biomedicines 2017;6:E2. [PMID: 29271929 DOI: 10.3390/biomedicines6010002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
94 Tailhades J, Takizawa H, Gait MJ, Wellings DA, Wade JD, Aoki Y, Shabanpoor F. Solid-Phase Synthesis of Difficult Purine-Rich PNAs through Selective Hmb Incorporation: Application to the Total Synthesis of Cell Penetrating Peptide-PNAs. Front Chem 2017;5:81. [PMID: 29094037 DOI: 10.3389/fchem.2017.00081] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]