BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Espaillat MP, Kew RR, Obeid LM. Sphingolipids in neutrophil function and inflammatory responses: Mechanisms and implications for intestinal immunity and inflammation in ulcerative colitis. Adv Biol Regul 2017;63:140-55. [PMID: 27866974 DOI: 10.1016/j.jbior.2016.11.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Ishay Y, Rotnemer-Golinkin D, Ilan Y. The role of the sphingosine axis in immune regulation: A dichotomy in the anti-inflammatory effects between sphingosine kinase 1 and sphingosine kinase 2-dependent pathways. Int J Immunopathol Pharmacol 2021;35:20587384211053274. [PMID: 34789044 DOI: 10.1177/20587384211053274] [Reference Citation Analysis]
2 Rusconi B, Jiang X, Sidhu R, Ory DS, Warner BB, Tarr PI. Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Sci Rep 2018;8:10984. [PMID: 30030452 DOI: 10.1038/s41598-018-28862-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
3 Hait NC, Maiti A. The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer. Mediators Inflamm 2017;2017:4806541. [PMID: 29269995 DOI: 10.1155/2017/4806541] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 15.2] [Reference Citation Analysis]
4 Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA, Aliev G, Bishayee A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 2020;207:107464. [PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 13.3] [Reference Citation Analysis]
5 Fakhr Y, Brindley DN, Hemmings DG. Physiological and pathological functions of sphingolipids in pregnancy. Cell Signal 2021;85:110041. [PMID: 33991614 DOI: 10.1016/j.cellsig.2021.110041] [Reference Citation Analysis]
6 Sukocheva OA, Lukina E, McGowan E, Bishayee A. Sphingolipids as mediators of inflammation and novel therapeutic target in inflammatory bowel disease. Adv Protein Chem Struct Biol 2020;120:123-58. [PMID: 32085881 DOI: 10.1016/bs.apcsb.2019.11.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
7 Kanagaratham C, Chiwara V, Ho B, Moussette S, Youssef M, Venuto D, Jeannotte L, Bourque G, de Sanctis JB, Radzioch D, Naumova AK. Loss of the zona pellucida-binding protein 2 (Zpbp2) gene in mice impacts airway hypersensitivity and lung lipid metabolism in a sex-dependent fashion. Mamm Genome 2018;29:281-98. [PMID: 29536159 DOI: 10.1007/s00335-018-9743-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
8 Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2021;78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Reference Citation Analysis]
9 Schuchman EH, Mitchell J, Solyom A. Morbidity and mortality associated with Farber disease and prospects for therapy. Expert Opinion on Orphan Drugs 2017;5:717-26. [DOI: 10.1080/21678707.2017.1359086] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
10 Vardon Bounes F, Mujalli A, Cenac C, Severin S, Le Faouder P, Chicanne G, Gaits-Iacovoni F, Minville V, Gratacap MP, Payrastre B. The importance of blood platelet lipid signaling in thrombosis and in sepsis. Adv Biol Regul 2018;67:66-73. [PMID: 28993230 DOI: 10.1016/j.jbior.2017.09.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
11 Liu F, Yao Y, Lu Z, Zhang Q, Liu C, Zhu C, Lin C. 5-Hydroxy-4-methoxycanthin-6-one alleviates dextran sodium sulfate-induced colitis in rats via regulation of metabolic profiling and suppression of NF-κB/p65 signaling pathway. Phytomedicine 2021;82:153438. [PMID: 33422953 DOI: 10.1016/j.phymed.2020.153438] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Chiricozzi E, Loberto N, Schiumarini D, Samarani M, Mancini G, Tamanini A, Lippi G, Dechecchi MC, Bassi R, Giussani P, Aureli M. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection. J Leukoc Biol 2018;103:445-56. [PMID: 29345379 DOI: 10.1002/JLB.3MR0717-269R] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
13 Li Q, Liang X, Xue X, Wang K, Wu L. Lipidomics Provides Novel Insights into Understanding the Bee Pollen Lipids Transepithelial Transport and Metabolism in Human Intestinal Cells. J Agric Food Chem. 2020;68:907-917. [PMID: 31842537 DOI: 10.1021/acs.jafc.9b06531] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Brini M, Leanza L, Szabo I. Lipid-Mediated Modulation of Intracellular Ion Channels and Redox State: Physiopathological Implications. Antioxid Redox Signal 2018;28:949-72. [PMID: 28679281 DOI: 10.1089/ars.2017.7215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
15 Lian N, Shi LQ, Hao ZM, Chen M. Research progress and perspective in metabolism and metabolomics of psoriasis. Chin Med J (Engl) 2020;133:2976-86. [PMID: 33237698 DOI: 10.1097/CM9.0000000000001242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol 2020;318:C1055-64. [PMID: 32130072 DOI: 10.1152/ajpcell.00003.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
17 Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Effect of riboflavin-producing bacteria against chemically induced colitis in mice. J Appl Microbiol 2018;124:232-40. [PMID: 29080295 DOI: 10.1111/jam.13622] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
18 Meng G, Wuest M, Tang X, Dufour J, Zhao Y, Curtis JM, McMullen TPW, Murray D, Wuest F, Brindley DN. Repeated Fractions of X-Radiation to the Breast Fat Pads of Mice Augment Activation of the Autotaxin-Lysophosphatidate-Inflammatory Cycle. Cancers (Basel) 2019;11:E1816. [PMID: 31752313 DOI: 10.3390/cancers11111816] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
19 Geffken K, Spiegel S. Sphingosine kinase 1 in breast cancer. Adv Biol Regul 2018;67:59-65. [PMID: 29055687 DOI: 10.1016/j.jbior.2017.10.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]
20 Meng G, Tang X, Yang Z, Zhao Y, Curtis JM, McMullen TPW, Brindley DN. Dexamethasone decreases the autotaxin-lysophosphatidate-inflammatory axis in adipose tissue: implications for the metabolic syndrome and breast cancer. FASEB J 2019;33:1899-910. [PMID: 30192654 DOI: 10.1096/fj.201801226R] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
21 Chang ML, Moussette S, Gamero-Estevez E, Gálvez JH, Chiwara V, Gupta IR, Ryan AK, Naumova AK. Regulatory interaction between the ZPBP2-ORMDL3/Zpbp2-Ormdl3 region and the circadian clock. PLoS One 2019;14:e0223212. [PMID: 31560728 DOI: 10.1371/journal.pone.0223212] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater 2021:S1742-7061(21)00258-0. [PMID: 33882355 DOI: 10.1016/j.actbio.2021.04.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Bocheńska K, Gabig-Cimińska M. Unbalanced Sphingolipid Metabolism and Its Implications for the Pathogenesis of Psoriasis. Molecules 2020;25:E1130. [PMID: 32138315 DOI: 10.3390/molecules25051130] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
24 Espaillat MP, Snider AJ, Qiu Z, Channer B, Coant N, Schuchman EH, Kew RR, Sheridan BS, Hannun YA, Obeid LM. Loss of acid ceramidase in myeloid cells suppresses intestinal neutrophil recruitment. FASEB J 2018;32:2339-53. [PMID: 29259036 DOI: 10.1096/fj.201700585R] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
25 Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. Molecular Chaperones in Human Disorders. Elsevier; 2019. pp. 153-219. [DOI: 10.1016/bs.apcsb.2018.09.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul 2018;70:3-18. [PMID: 30193828 DOI: 10.1016/j.jbior.2018.08.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
27 Grösch S, Alessenko AV, Albi E. The Many Facets of Sphingolipids in the Specific Phases of Acute Inflammatory Response. Mediators Inflamm 2018;2018:5378284. [PMID: 29540995 DOI: 10.1155/2018/5378284] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
28 Kim JM, Cheon JH. Pathogenesis and clinical perspectives of extraintestinal manifestations in inflammatory bowel diseases. Intest Res 2020;18:249-64. [PMID: 32295331 DOI: 10.5217/ir.2019.00128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
29 Echizen K, Oshima H, Nakayama M, Oshima M. The inflammatory microenvironment that promotes gastrointestinal cancer development and invasion. Adv Biol Regul. 2018;68:39-45. [PMID: 29428221 DOI: 10.1016/j.jbior.2018.02.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]