BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peter HH, Ochs HD, Cunningham-Rundles C, Vinh DC, Kiessling P, Greve B, Jolles S. Targeting FcRn for immunomodulation: Benefits, risks, and practical considerations. J Allergy Clin Immunol 2020;146:479-491.e5. [PMID: 32896308 DOI: 10.1016/j.jaci.2020.07.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Wen C, Hu H, Yang W, Zhao Y, Zheng L, Jiang X, Wang L. Targeted inhibition of FcRn reduces NET formation to ameliorate experimental ulcerative colitis by accelerating ANCA clearance. International Immunopharmacology 2022;113:109474. [DOI: 10.1016/j.intimp.2022.109474] [Reference Citation Analysis]
2 Suzuki S, Uzawa A, Murai H. Efgartigimod for generalized myasthenia gravis with or without anti-acetylcholine receptor antibodies: a worldwide and Japanese perspective. Expert Rev Clin Immunol 2022. [PMID: 36227228 DOI: 10.1080/1744666X.2022.2136167] [Reference Citation Analysis]
3 Ramdani Y, Lamamy J, Watier H, Gouilleux-gruart V. Monoclonal Antibody Engineering and Design to Modulate FcRn Activities: A Comprehensive Review. IJMS 2022;23:9604. [DOI: 10.3390/ijms23179604] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Moise KJ, Oepkes D, Lopriore E, Bredius RGM. Targeting neonatal Fc receptor: potential clinical applications in pregnancy. Ultrasound in Obstet & Gyne 2022;60:167-75. [DOI: 10.1002/uog.24891] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Dalakas MC. Role of complement, anti-complement therapeutics, and other targeted immunotherapies in myasthenia gravis. Expert Rev Clin Immunol 2022;:1-11. [PMID: 35730504 DOI: 10.1080/1744666X.2022.2082946] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
6 Akbarin MM, Rafatpanah H, Soleimanpour S, Amini AA, Arian A, Mosavat A, Rezaee SA. TAX and HBZ: hFc Ɣ 1 proteins as targets for passive immunotherapy. Iran J Basic Med Sci 2022;25:586-96. [PMID: 35911645 DOI: 10.22038/IJBMS.2022.64787.14266] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Alhaidar MK, Abumurad S, Soliven B, Rezania K. Current Treatment of Myasthenia Gravis. J Clin Med 2022;11:1597. [PMID: 35329925 DOI: 10.3390/jcm11061597] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
8 Schneider-Gold C, Gilhus NE. Advances and challenges in the treatment of myasthenia gravis. Ther Adv Neurol Disord 2021;14:17562864211065406. [PMID: 34987614 DOI: 10.1177/17562864211065406] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
9 Nelke C, Spatola M, Schroeter CB, Wiendl H, Lünemann JD. Neonatal Fc Receptor-Targeted Therapies in Neurology. Neurotherapeutics 2022. [PMID: 34997443 DOI: 10.1007/s13311-021-01175-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Gomathy SB, Agarwal A, Vishnu VY; Department of Neurology, All India Institute of Medical Sciences, New Delhi, India, Department of Neurology, All India Institute of Medical Sciences, New Delhi, India, Department of Neurology, All India Institute of Medical Sciences, New Delhi, India. Molecular Therapy in Myasthenia Gravis. Neurology 2022;18:49. [DOI: 10.17925/usn.2022.18.1.49] [Reference Citation Analysis]
11 Lamamy J, Boulard P, Brachet G, Tourlet S, Gouilleux-Gruart V, Ramdani Y. "Ways in which the neonatal Fc-receptor is involved in autoimmunity". J Transl Autoimmun 2021;4:100122. [PMID: 34568803 DOI: 10.1016/j.jtauto.2021.100122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021;175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
13 Johnson BT, Jameyfield E, Aakalu VK. Optic neuropathy and diplopia from thyroid eye disease: update on pathophysiology and treatment. Curr Opin Neurol 2021;34:116-21. [PMID: 33278144 DOI: 10.1097/WCO.0000000000000894] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
14 Evoli A, Spagni G, Monte G, Damato V. Heterogeneity in myasthenia gravis: considerations for disease management. Expert Rev Clin Immunol 2021;17:761-71. [PMID: 34043932 DOI: 10.1080/1744666X.2021.1936500] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
15 Vinh DC, Abel L, Bastard P, Cheng MP, Condino-Neto A, Gregersen PK, Haerynck F, Cicalese MP, Hagin D, Soler-Palacín P, Planas AM, Pujol A, Notarangelo LD, Zhang Q, Su HC, Casanova JL, Meyts I; COVID Human Genetic Effort. Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. J Clin Immunol 2021. [PMID: 34101091 DOI: 10.1007/s10875-021-01068-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 21.0] [Reference Citation Analysis]
16 Patel DD, Bussel JB. Neonatal Fc receptor in human immunity: Function and role in therapeutic intervention. J Allergy Clin Immunol 2020;146:467-78. [PMID: 32896307 DOI: 10.1016/j.jaci.2020.07.015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 34.0] [Reference Citation Analysis]
17 Wyckoff SL, Hudson KE. Targeting the neonatal Fc receptor (FcRn) to treat autoimmune diseases and maternal-fetal immune cytopenias. Transfusion 2021;61:1350-4. [PMID: 33650699 DOI: 10.1111/trf.16341] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Dalakas MC, Spaeth PJ. The importance of FcRn in neuro-immunotherapies: From IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors. Ther Adv Neurol Disord 2021;14:1756286421997381. [PMID: 33717213 DOI: 10.1177/1756286421997381] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
19 Su S, Liu Q, Zhang X, Wen X, Lei L, Shen F, Fan Z, Duo J, Lu Y, Di L, Wang M, Chen H, Zhu W, Xu M, Wang S, Da Y. VNTR2/VNTR3 genotype in the FCGRT gene is associated with reduced effectiveness of intravenous immunoglobulin in patients with myasthenia gravis. Ther Adv Neurol Disord 2021;14:1756286420986747. [PMID: 33552238 DOI: 10.1177/1756286420986747] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
20 Prevot J, Jolles S. Global immunoglobulin supply: steaming towards the iceberg? Curr Opin Allergy Clin Immunol 2020;20:557-64. [PMID: 33044340 DOI: 10.1097/ACI.0000000000000696] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]