1 |
Ai X, Yu P, Li X, Lai X, Yang M, Liu F, Luan F, Meng X. Polysaccharides from Spirulina platensis: Extraction methods, structural features and bioactivities diversity. Int J Biol Macromol 2023;231:123211. [PMID: 36632963 DOI: 10.1016/j.ijbiomac.2023.123211] [Reference Citation Analysis]
|
2 |
Chen W, Chen YH, Liao YC, Huang XW, Lu TJ, Shih SR. Effect of hot water extracts of Arthrospira maxima (spirulina) against respiratory syncytial virus. Phytomedicine 2023;110:154611. [PMID: 36580819 DOI: 10.1016/j.phymed.2022.154611] [Reference Citation Analysis]
|
3 |
Besednova NN, Andryukov BG, Kuznetsova TA, Zaporozhets TS, Kryzhanovsky SP, Ermakova SP, Shchelkanov MY. Antiviral Effects and Mechanisms of Action of Water Extracts and Polysaccharides of Microalgae and Cyanobacteria. J Pharm Nutr Sci 2022;12:54-73. [DOI: 10.29169/1927-5951.2022.12.05] [Reference Citation Analysis]
|
4 |
Balasubramaniam A, Arumugham I M, Nathan P S, Santhosh Kumar MP, Murugesan K, Dharmaraj S, Thangavelu L, Yadalam PK, Ramadoss R, Ashokkumar V. Emerging technologies and potential applications of algae in dentistry - A critical review. J Biotechnol 2022;360:1-10. [PMID: 36195207 DOI: 10.1016/j.jbiotec.2022.09.021] [Reference Citation Analysis]
|
5 |
Yang Y, Hassan SH, Awasthi MK, Gajendran B, Sharma M, Ji M, Salama E. The recent progress on the bioactive compounds from algal biomass for human health applications. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.102267] [Reference Citation Analysis]
|
6 |
Caetano PA, do Nascimento TC, Fernandes AS, Nass PP, Vieira KR, Maróstica Junior MR, Jacob-lopes E, Zepka LQ. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. Biocatalysis and Agricultural Biotechnology 2022;45:102491. [DOI: 10.1016/j.bcab.2022.102491] [Reference Citation Analysis]
|
7 |
Mandal S, Nagi GK, Corcoran AA, Agrawal R, Dubey M, Hunt RW. Algal polysaccharides for 3D printing: A review. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120267] [Reference Citation Analysis]
|
8 |
Jung F, Braune S, Jung CHG, Krüger-genge A, Waldeck P, Petrick I, Küpper J. Lipophilic and Hydrophilic Compounds from Arthrospira platensis and Its Effects on Tissue and Blood Cells—An Overview. Life 2022;12:1497. [DOI: 10.3390/life12101497] [Reference Citation Analysis]
|
9 |
Yu Z, Hong Y, Xie K, Fan Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods 2022;11:2806. [PMID: 36140934 DOI: 10.3390/foods11182806] [Reference Citation Analysis]
|
10 |
Dai N, Wang Q, Xu B, Chen H. Remarkable Natural Biological Resource of Algae for Medical Applications. Front Mar Sci 2022;9:912924. [DOI: 10.3389/fmars.2022.912924] [Reference Citation Analysis]
|
11 |
Zohir WF, Kapase VU, Nawkarkar P, Kumar S. Algal Life Cycle Analysis and Its Contribution to the Circular Economy. Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment 2022. [DOI: 10.4018/978-1-6684-2438-4.ch010] [Reference Citation Analysis]
|
12 |
Wei Q, Fu G, Wang K, Yang Q, Zhao J, Wang Y, Ji K, Song S. Advances in Research on Antiviral Activities of Sulfated Polysaccharides from Seaweeds. Pharmaceuticals 2022;15:581. [DOI: 10.3390/ph15050581] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
13 |
Ahirwar A, Kesharwani K, Deka R, Muthukumar S, Khan MJ, Rai A, Vinayak V, Varjani S, Joshi KB, Morjaria S. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022:S0168-1656(22)00061-X. [PMID: 35339574 DOI: 10.1016/j.jbiotec.2022.03.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
14 |
Trincone A. Polysaccharides Produced by Microalgae. Polysaccharides of Microbial Origin 2022. [DOI: 10.1007/978-3-030-42215-8_18] [Reference Citation Analysis]
|
15 |
Shaikh R, Rizvi A, Pandit S, Desai N, Patil R. Microalgae: Classification, bioactives, medicinal properties, industrial applications, and future prospectives. An Integration of Phycoremediation Processes in Wastewater Treatment 2022. [DOI: 10.1016/b978-0-12-823499-0.00004-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Manning SR, Perri KA, Blackwell K. Bioactive Polysaccharides from Microalgae. Polysaccharides of Microbial Origin 2022. [DOI: 10.1007/978-3-030-42215-8_37] [Reference Citation Analysis]
|
17 |
Morais MG, Rosa GM, Moraes L, Alvarenga AGP, da Silva JLV, Costa JAV. Microalgae Polysaccharides with Potential Biomedical Application. Polysaccharides of Microbial Origin 2022. [DOI: 10.1007/978-3-030-42215-8_20] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Mota R, Flores C, Tamagnini P. Cyanobacterial Extracellular Polymeric Substances (EPS). Polysaccharides of Microbial Origin 2022. [DOI: 10.1007/978-3-030-42215-8_11] [Reference Citation Analysis]
|
19 |
Camelini CM, Rossi MJ, de Sousa FTG, Giachini A. Fungal Polysaccharide Production for Dermatological Purposes. Polysaccharides of Microbial Origin 2022. [DOI: 10.1007/978-3-030-42215-8_64] [Reference Citation Analysis]
|
20 |
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021;14:35. [PMID: 35062238 DOI: 10.3390/v14010035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
21 |
Chaisuwan W, Phimolsiripol Y, Chaiyaso T, Techapun C, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Wangtueai S, Sommano SR, You S, Regenstein JM, Barba FJ, Seesuriyachan P. The Antiviral Activity of Bacterial, Fungal, and Algal Polysaccharides as Bioactive Ingredients: Potential Uses for Enhancing Immune Systems and Preventing Viruses. Front Nutr 2021;8:772033. [PMID: 34805253 DOI: 10.3389/fnut.2021.772033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
22 |
Cao MX, Xie XD, Wang XR, Hu WY, Zhao Y, Chen Q, Ji L, Wei YY, Yu ML, Hu TJ. Separation, Purification, Structure Analysis, In Vitro Antioxidant Activity and circRNA-miRNA-mRNA Regulatory Network on PRV-Infected RAW264.7 Cells of a Polysaccharide Derived from Arthrospira platensis. Antioxidants (Basel) 2021;10:1689. [PMID: 34829559 DOI: 10.3390/antiox10111689] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
Huang Y, Song Y, Li J, Lv C, Chen ZS, Liu Z. Receptors and ligands for herpes simplex viruses: Novel insights for drug targeting. Drug Discov Today 2021:S1359-6446(21)00442-6. [PMID: 34678489 DOI: 10.1016/j.drudis.2021.10.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
24 |
Salih AEM, Thissera B, Yaseen M, Hassane ASI, El-Seedi HR, Sayed AM, Rateb ME. Marine Sulfated Polysaccharides as Promising Antiviral Agents: A Comprehensive Report and Modeling Study Focusing on SARS CoV-2. Mar Drugs 2021;19:406. [PMID: 34436245 DOI: 10.3390/md19080406] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
|
25 |
Moosavi-nasab M, Oliyaei N, Eun J, Mirzapour-kouhdasht A. Innovation in the Seafood Sector through the Valorization of By-Products. Innovation in the Food Sector Through the Valorization of Food and Agro-Food By-Products 2021. [DOI: 10.5772/intechopen.95008] [Reference Citation Analysis]
|
26 |
Chen Y, Liao Y, Huang J, Kung Y, Chiueh C. Hot water extract of Arthrospira maxima (AHWE) has broad-spectrum antiviral activity against RNA virus including coronavirus SARS-CoV2, and the antivirus spray application.. [DOI: 10.1101/2021.06.06.446935] [Reference Citation Analysis]
|
27 |
Mazur-Marzec H, Cegłowska M, Konkel R, Pyrć K. Antiviral Cyanometabolites-A Review. Biomolecules 2021;11:474. [PMID: 33810129 DOI: 10.3390/biom11030474] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
28 |
Pagarete A, Ramos AS, Puntervoll P, Allen MJ, Verdelho V. Antiviral Potential of Algal Metabolites-A Comprehensive Review. Mar Drugs 2021;19:94. [PMID: 33562153 DOI: 10.3390/md19020094] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
|
29 |
Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front Cell Infect Microbiol 2020;10:617578. [PMID: 33537244 DOI: 10.3389/fcimb.2020.617578] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
|
30 |
Trincone A. Polysaccharides Produced by Microalgae. Polysaccharides of Microbial Origin 2021. [DOI: 10.1007/978-3-030-35734-4_18-1] [Reference Citation Analysis]
|
31 |
Mota R, Flores C, Tamagnini P. Cyanobacterial Extracellular Polymeric Substances (EPS). Polysaccharides of Microbial Origin 2021. [DOI: 10.1007/978-3-030-35734-4_11-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
32 |
Morais MG, Rosa GM, Moraes L, Alvarenga AGP, da Silva JLV, Costa JAV. Microalgae Polysaccharides with Potential Biomedical Application. Polysaccharides of Microbial Origin 2021. [DOI: 10.1007/978-3-030-35734-4_20-1] [Reference Citation Analysis]
|
33 |
Wani AK, Akhtar N, Datta B, Pandey J, Amin-ul Mannan M. Cyanobacteria-derived small molecules: a new class of drugs. Volatiles and Metabolites of Microbes 2021. [DOI: 10.1016/b978-0-12-824523-1.00003-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
34 |
Camelini CM, Rossi MJ, de Sousa FTG, Giachini A. Fungal Polysaccharide Production for Dermatological Purposes. Polysaccharides of Microbial Origin 2021. [DOI: 10.1007/978-3-030-35734-4_64-1] [Reference Citation Analysis]
|
35 |
Palmer JS, Muñoz DC, Edwards C. Biological activities of natural products from microalgae. Cultured Microalgae for the Food Industry 2021. [DOI: 10.1016/b978-0-12-821080-2.00004-6] [Reference Citation Analysis]
|
36 |
Manning SR, Perri KA, Blackwell K. Bioactive Polysaccharides from Microalgae. Polysaccharides of Microbial Origin 2021. [DOI: 10.1007/978-3-030-35734-4_37-1] [Reference Citation Analysis]
|
37 |
Zheng W, Xu Q, Zhang Y, E X, Gao W, Zhang M, Zhai W, Rajkumar RS, Liu Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J 2020;17:192. [PMID: 33298111 DOI: 10.1186/s12985-020-01463-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
|
38 |
Ferrazzano GF, Papa C, Pollio A, Ingenito A, Sangianantoni G, Cantile T. Cyanobacteria and Microalgae as Sources of Functional Foods to Improve Human General and Oral Health. Molecules 2020;25:E5164. [PMID: 33171936 DOI: 10.3390/molecules25215164] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
39 |
Xu Y, Ye J, Zhou D, Su L. Research progress on applications of calcium derived from marine organisms. Sci Rep 2020;10:18425. [PMID: 33116162 DOI: 10.1038/s41598-020-75575-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
40 |
Ma R, Wang B, Chua ET, Zhao X, Lu K, Ho SH, Shi X, Liu L, Xie Y, Lu Y, Chen J. Comprehensive Utilization of Marine Microalgae for Enhanced Co-Production of Multiple Compounds. Mar Drugs 2020;18:E467. [PMID: 32948074 DOI: 10.3390/md18090467] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
|
41 |
Liu Z, Niu F, Xie Y, Xie S, Liu Y, Yang Y, Zhou C, Wan X. A review: Natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism. Biomedicine & Pharmacotherapy 2020;129:110469. [DOI: 10.1016/j.biopha.2020.110469] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
|
42 |
Le PU, Vo TS, Kim S. Marine Cyanobacteria. Encyclopedia of Marine Biotechnology 2020. [DOI: 10.1002/9781119143802.ch97] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
43 |
Joseph J, T K, Ajay A, Das VA, Raj VS. Green tea and Spirulina extracts inhibit SARS, MERS, and SARS-2 spike pseudotyped virus entry in vitro.. [DOI: 10.1101/2020.06.20.162701] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
44 |
Costa JAV, Moreira JB, Fanka LS, Kosinski RDC, Morais MGD. Microalgal biotechnology applied in biomedicine. Handbook of Algal Science, Technology and Medicine 2020. [DOI: 10.1016/b978-0-12-818305-2.00027-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
45 |
Pierre G, Delattre C, Dubessay P, Jubeau S, Vialleix C, Cadoret JP, Probert I, Michaud P. What Is in Store for EPS Microalgae in the Next Decade? Molecules 2019;24:E4296. [PMID: 31775355 DOI: 10.3390/molecules24234296] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 11.0] [Reference Citation Analysis]
|
46 |
Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019;17:E320. [PMID: 31151260 DOI: 10.3390/md17060320] [Cited by in Crossref: 117] [Cited by in F6Publishing: 119] [Article Influence: 29.3] [Reference Citation Analysis]
|
47 |
Sato E, Hiromatsu K, Murata K, Imafuku S. Loss of ATP2A2 Allows Herpes Simplex Virus 1 Infection of a Human Epidermis Model by Disrupting Innate Immunity and Barrier Function. J Invest Dermatol 2018;138:2540-9. [PMID: 29870688 DOI: 10.1016/j.jid.2018.05.019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
|
48 |
Wollina U, Voicu C, Gianfaldoni S, Lotti T, França K, Tchernev G. Arthrospira Platensis - Potential in Dermatology and Beyond. Open Access Maced J Med Sci 2018;6:176-80. [PMID: 29484021 DOI: 10.3889/oamjms.2018.033] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
|
49 |
Dewi IC, Falaise C, Hellio C, Bourgougnon N, Mouget J. Anticancer, Antiviral, Antibacterial, and Antifungal Properties in Microalgae. Microalgae in Health and Disease Prevention 2018. [DOI: 10.1016/b978-0-12-811405-6.00012-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
|
50 |
Wulandari DA, Sidhartha E, Setyaningsih I, Marbun JM, Syafruddin D, Asih PBS. Evaluation of antiplasmodial properties of a cyanobacterium, Spirulina platensis and its mechanism of action. Natural Product Research 2018;32:2067-70. [DOI: 10.1080/14786419.2017.1360880] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
51 |
Strieth D, Schwing J, Kuhne S, Lakatos M, Muffler K, Ulber R. A semi-continuous process based on an ePBR for the production of EPS using Trichocoleus sociatus. Journal of Biotechnology 2017;256:6-12. [DOI: 10.1016/j.jbiotec.2017.06.1205] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
|
52 |
Reichert M, Bergmann SM, Hwang J, Buchholz R, Lindenberger C. Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus. J Fish Dis 2017;40:1441-50. [PMID: 28422294 DOI: 10.1111/jfd.12618] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
|
53 |
Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016;90:1817-40. [PMID: 27259333 DOI: 10.1007/s00204-016-1744-5] [Cited by in Crossref: 252] [Cited by in F6Publishing: 204] [Article Influence: 36.0] [Reference Citation Analysis]
|