1 |
Lee KJ, Janda M, Stark MS, Sturm RA, Soyer HP. On Naevi and Melanomas: Two Sides of the Same Coin? Front Med (Lausanne) 2021;8:635316. [PMID: 33681261 DOI: 10.3389/fmed.2021.635316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
2 |
Martorell A, Martin-gorgojo A, Ríos-viñuela E, Rueda-carnero J, Alfageme F, Taberner R. Artificial intelligence in dermatology: A threat or an opportunity? Actas Dermo-Sifiliográficas (English Edition) 2021. [DOI: 10.1016/j.adengl.2021.11.007] [Reference Citation Analysis]
|
3 |
Traore A, Ata-ul-karim ST, Duan A, Soothar MK, Traore S, Zhao B. Predicting Equivalent Water Thickness in Wheat Using UAV Mounted Multispectral Sensor through Deep Learning Techniques. Remote Sensing 2021;13:4476. [DOI: 10.3390/rs13214476] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
4 |
Cheng CT, Wang Y, Chen HW, Hsiao PM, Yeh CN, Hsieh CH, Miao S, Xiao J, Liao CH, Lu L. A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs. Nat Commun 2021;12:1066. [PMID: 33594071 DOI: 10.1038/s41467-021-21311-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
5 |
Quattrocchi E, Sominidi-Damodaran S, Murphree DH, Meves A. β3 integrin immunohistochemistry as a method to predict sentinel lymph node status in patients with primary cutaneous melanoma. Int J Dermatol 2020;59:1241-8. [PMID: 32772371 DOI: 10.1111/ijd.15125] [Reference Citation Analysis]
|
6 |
Puri P, Comfere N, Pittelkow MR, Bezalel SA, Murphree DH. COVID-19: An opportunity to build dermatology's digital future. Dermatol Ther 2020;33:e14149. [PMID: 32767453 DOI: 10.1111/dth.14149] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Puri P, Yiannias JA, Mangold AR, Swanson DL, Pittelkow MR. The policy dimensions, regulatory landscape, and market characteristics of teledermatology in the United States. JAAD Int 2020;1:202-7. [PMID: 34409341 DOI: 10.1016/j.jdin.2020.09.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
8 |
Malciu AM, Lupu M, Voiculescu VM. Artificial Intelligence-Based Approaches to Reflectance Confocal Microscopy Image Analysis in Dermatology. J Clin Med 2022;11:429. [PMID: 35054123 DOI: 10.3390/jcm11020429] [Reference Citation Analysis]
|
9 |
Chen SB, Novoa RA. Artificial intelligence for dermatopathology: Current trends and the road ahead. Seminars in Diagnostic Pathology 2022. [DOI: 10.1053/j.semdp.2022.01.003] [Reference Citation Analysis]
|