BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Weiß E, Kretschmer D. Formyl-Peptide Receptors in Infection, Inflammation, and Cancer. Trends Immunol 2018;39:815-29. [PMID: 30195466 DOI: 10.1016/j.it.2018.08.005] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Perniss A, Liu S, Boonen B, Keshavarz M, Ruppert A, Timm T, Pfeil U, Soultanova A, Kusumakshi S, Delventhal L, Aydin Ö, Pyrski M, Deckmann K, Hain T, Schmidt N, Ewers C, Günther A, Lochnit G, Chubanov V, Gudermann T, Oberwinkler J, Klein J, Mikoshiba K, Leinders-zufall T, Offermanns S, Schütz B, Boehm U, Zufall F, Bufe B, Kummer W. Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity 2020;52:683-699.e11. [DOI: 10.1016/j.immuni.2020.03.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
2 Westman J, Grinstein S, Marques PE. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Front Immunol 2019;10:3030. [PMID: 31998312 DOI: 10.3389/fimmu.2019.03030] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 18.0] [Reference Citation Analysis]
3 Lee SH, Tonello R, Im ST, Jeon H, Park J, Ford Z, Davidson S, Kim YH, Park CK, Berta T. Resolvin D3 controls mouse and human TRPV1-positive neurons and preclinical progression of psoriasis. Theranostics 2020;10:12111-26. [PMID: 33204332 DOI: 10.7150/thno.52135] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
4 Sundqvist M, Holdfeldt A, Wright SC, Møller TC, Siaw E, Jennbacken K, Franzyk H, Bouvier M, Dahlgren C, Forsman H. Barbadin selectively modulates FPR2-mediated neutrophil functions independent of receptor endocytosis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2020;1867:118849. [DOI: 10.1016/j.bbamcr.2020.118849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 More S, Marakalala MJ, Sathekge M. Tuberculosis: Role of Nuclear Medicine and Molecular Imaging With Potential Impact of Neutrophil-Specific Tracers. Front Med 2021;8:758636. [DOI: 10.3389/fmed.2021.758636] [Reference Citation Analysis]
6 Chen PJ, Ko IL, Lee CL, Hu HC, Chang FR, Wu YC, Leu YL, Wu CC, Lin CY, Pan CY, Tsai YF, Hwang TL. Targeting allosteric site of AKT by 5,7-dimethoxy-1,4-phenanthrenequinone suppresses neutrophilic inflammation. EBioMedicine 2019;40:528-40. [PMID: 30709770 DOI: 10.1016/j.ebiom.2019.01.043] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
7 Liu X, Zhu M, Wang X, Dong X, Liu H, Li R, Jia S, Lu Q, Zhao M, Sun P, Chen H, Fang C. A nano-innate immune system activator for cancer therapy in a 4T1 tumor-bearing mouse model. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01265-4] [Reference Citation Analysis]
8 Sundqvist M, Christenson K, Gabl M, Holdfeldt A, Jennbacken K, Møller TC, Dahlgren C, Forsman H. Staphylococcus aureus –Derived PSMα Peptides Activate Neutrophil FPR2 but Lack the Ability to Mediate β-Arrestin Recruitment and Chemotaxis. J I 2019;203:3349-60. [DOI: 10.4049/jimmunol.1900871] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
9 Pastorek M, Dúbrava M, Celec P. On the Origin of Neutrophil Extracellular Traps in COVID-19. Front Immunol 2022;13:821007. [DOI: 10.3389/fimmu.2022.821007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mattila JT, Beaino W, White AG, Nyiranshuti L, Maiello P, Tomko J, Frye LJ, Fillmore D, Scanga CA, Lin PL, Flynn JL, Anderson CJ. Retention of 64Cu-FLFLF, a Formyl Peptide Receptor 1-Specific PET Probe, Correlates with Macrophage and Neutrophil Abundance in Lung Granulomas from Cynomolgus Macaques. ACS Infect Dis 2021;7:2264-76. [PMID: 34255474 DOI: 10.1021/acsinfecdis.0c00826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Lai KH, Chen PJ, Chen CC, Yang SH, El-Shazly M, Chang YC, Wu YH, Wu YH, Wang YH, Hsieh HL, Hwang TL. Lophatherum gracile Brongn. attenuates neutrophilic inflammation through inhibition of JNK and calcium. J Ethnopharmacol 2021;264:113224. [PMID: 32800928 DOI: 10.1016/j.jep.2020.113224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Li M, Yu L, Zhai Q, Liu B, Zhao J, Zhang H, Chen W, Tian F. Ganoderma applanatum polysaccharides and ethanol extracts promote the recovery of colitis through intestinal barrier protection and gut microbiota modulations. Food Funct 2021. [PMID: 34935013 DOI: 10.1039/d1fo03677g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Lind S, Gabl M, Holdfeldt A, Mårtensson J, Sundqvist M, Nishino K, Dahlgren C, Mukai H, Forsman H. Identification of Residues Critical for FPR2 Activation by the Cryptic Peptide Mitocryptide-2 Originating from the Mitochondrial DNA-Encoded Cytochrome b. J Immunol 2019;202:2710-9. [PMID: 30902901 DOI: 10.4049/jimmunol.1900060] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Fu T, Mohan M, Brennan EP, Woodman OL, Godson C, Kantharidis P, Ritchie RH, Qin CX. Therapeutic Potential of Lipoxin A4 in Chronic Inflammation: Focus on Cardiometabolic Disease. ACS Pharmacol Transl Sci 2020;3:43-55. [PMID: 32259087 DOI: 10.1021/acsptsci.9b00097] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
15 [DOI: 10.1101/2020.06.08.139329] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
16 Wei C, Guo S, Liu W, Jin F, Wei B, Fan H, Su H, Liu J, Zhang N, Fang D, Li G, Shu S, Li X, He X, Zhang X, Duan C. Resolvin D1 ameliorates Inflammation-Mediated Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in rats by Modulating A20 and NLRP3 Inflammasome. Front Pharmacol 2020;11:610734. [PMID: 33732145 DOI: 10.3389/fphar.2020.610734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
17 Cattaneo F, Russo R, Castaldo M, Chambery A, Zollo C, Esposito G, Pedone PV, Ammendola R. Phosphoproteomic analysis sheds light on intracellular signaling cascades triggered by Formyl-Peptide Receptor 2. Sci Rep 2019;9:17894. [PMID: 31784636 DOI: 10.1038/s41598-019-54502-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
18 Maciuszek M, Cacace A, Brennan E, Godson C, Chapman TM. Recent advances in the design and development of formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential. Eur J Med Chem 2021;213:113167. [PMID: 33486199 DOI: 10.1016/j.ejmech.2021.113167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
19 Zhuang Y, Liu H, Edward Zhou X, Kumar Verma R, de Waal PW, Jang W, Xu TH, Wang L, Meng X, Zhao G, Kang Y, Melcher K, Fan H, Lambert NA, Eric Xu H, Zhang C. Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nat Commun 2020;11:885. [PMID: 32060286 DOI: 10.1038/s41467-020-14728-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
20 Li R, Mao Z, Ye X, Zuo T. Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms 2021;9:1017. [PMID: 34066850 DOI: 10.3390/microorganisms9051017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Lind S, Dahlgren C, Holmdahl R, Olofsson P, Forsman H. Functional selective FPR1 signaling in favor of an activation of the neutrophil superoxide generating NOX2 complex. J Leukoc Biol 2021;109:1105-20. [PMID: 33040403 DOI: 10.1002/JLB.2HI0520-317R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
22 Xiong Z, Zhu X, Geng J, Xu Y, Wu R, Li C, Fan D, Qin X, Du Y, Tian Y, Fan Z. Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial metabolite N-undecanoylglycine. Immunity 2022:S1074-7613(22)00124-8. [PMID: 35320705 DOI: 10.1016/j.immuni.2022.03.001] [Reference Citation Analysis]
23 Li N, Geng C, Hou S, Fan H, Gong Y. Damage-Associated Molecular Patterns and Their Signaling Pathways in Primary Blast Lung Injury: New Research Progress and Future Directions. Int J Mol Sci 2020;21:E6303. [PMID: 32878118 DOI: 10.3390/ijms21176303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Hasegawa M, Parkos CA, Nusrat A. WD40 Repeat Protein 26 Negatively Regulates Formyl Peptide Receptor-1 Mediated Wound Healing in Intestinal Epithelial Cells. Am J Pathol 2020;190:2029-38. [PMID: 32958140 DOI: 10.1016/j.ajpath.2020.06.005] [Reference Citation Analysis]
25 Boillat M, Carleton A, Rodriguez I. From immune to olfactory expression: neofunctionalization of formyl peptide receptors. Cell Tissue Res 2021;383:387-93. [PMID: 33452930 DOI: 10.1007/s00441-020-03393-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Nishiguchi T, Yoshimura H, Kasai RS, Fujiwara TK, Ozawa T. Synergetic Roles of Formyl Peptide Receptor 1 Oligomerization in Ligand-Induced Signal Transduction. ACS Chem Biol 2020;15:2577-87. [PMID: 32808756 DOI: 10.1021/acschembio.0c00631] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
27 Kinnare N, Hook JS, Patel PA, Monson NL, Moreland JG. Neutrophil Extracellular Trap Formation Potential Correlates with Lung Disease Severity in COVID-19 Patients. Inflammation 2021. [PMID: 34718927 DOI: 10.1007/s10753-021-01585-x] [Reference Citation Analysis]
28 Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR. Neutrophil extracellular traps in cancer. Semin Cancer Biol 2021:S1044-579X(21)00206-6. [PMID: 34280576 DOI: 10.1016/j.semcancer.2021.07.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020;20:95-112. [PMID: 31558839 DOI: 10.1038/s41577-019-0215-7] [Cited by in Crossref: 250] [Cited by in F6Publishing: 255] [Article Influence: 83.3] [Reference Citation Analysis]
30 Cussell PJG, Gomez Escalada M, Milton NGN, Paterson AWJ. The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction. Neural Regen Res 2020;15:1191-8. [PMID: 31960798 DOI: 10.4103/1673-5374.272566] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
31 Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L, Spadaro G, Galdiero MR. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 2021. [PMID: 34342773 DOI: 10.1007/s10238-021-00750-8] [Reference Citation Analysis]
32 Welcome MO. Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PharmaNutrition 2020;11:100176. [DOI: 10.1016/j.phanu.2020.100176] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
33 Liao HR, Lin CH, Chen JJ, Liu FC, Tseng CP. The anti-inflammatory effect of ε-viniferin by specifically targeting formyl peptide receptor 1 on human neutrophils. Chem Biol Interact 2021;345:109490. [PMID: 34144024 DOI: 10.1016/j.cbi.2021.109490] [Reference Citation Analysis]
34 Sharba S, Venkatakrishnan V, Padra M, Winther M, Gabl M, Sundqvist M, Wang J, Forsman H, Linden SK. Formyl peptide receptor 2 orchestrates mucosal protection against Citrobacter rodentium infection. Virulence 2019;10:610-24. [PMID: 31234710 DOI: 10.1080/21505594.2019.1635417] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
35 Ahmet DS, Basheer HA, Salem A, Lu D, Aghamohammadi A, Weyerhäuser P, Bordiga A, Almeniawi J, Rashid S, Cooper PA, Shnyder SD, Vinader V, Afarinkia K. Application of small molecule FPR1 antagonists in the treatment of cancers. Sci Rep 2020;10:17249. [PMID: 33057069 DOI: 10.1038/s41598-020-74350-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Okochi Y, Okamura Y. Regulation of Neutrophil Functions by Hv1/VSOP Voltage-Gated Proton Channels. Int J Mol Sci 2021;22:2620. [PMID: 33807711 DOI: 10.3390/ijms22052620] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Beh CY, Prajnamitra RP, Chen LL, Hsieh PC. Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules 2021;26:5052. [PMID: 34443638 DOI: 10.3390/molecules26165052] [Reference Citation Analysis]
38 Cammalleri M, Dal Monte M, Locri F, Pecci V, De Rosa M, Pavone V, Bagnoli P. The urokinase-type plasminogen activator system as drug target in retinitis pigmentosa: New pre-clinical evidence in the rd10 mouse model. J Cell Mol Med 2019;23:5176-92. [PMID: 31251468 DOI: 10.1111/jcmm.14391] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
39 Livshits G, Kalinkovich A. Receptors for pro-resolving mediators as a therapeutic tool for smooth muscle remodeling-associated disorders. Pharmacol Res 2021;164:105340. [PMID: 33276103 DOI: 10.1016/j.phrs.2020.105340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Peng X, Su H, Wang H, Hu G, Hu K, Zhou L, Qiu M. Applanmerotic acids A and B, two meroterpenoid dimers with an unprecedented polycyclic skeleton from Ganoderma applanatum that inhibit formyl peptide receptor 2. Org Chem Front 2021;8:3381-9. [DOI: 10.1039/d1qo00294e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Lind S, Sundqvist M, Holmdahl R, Dahlgren C, Forsman H, Olofsson P. Functional and signaling characterization of the neutrophil FPR2 selective agonist Act-389949. Biochemical Pharmacology 2019;166:163-73. [DOI: 10.1016/j.bcp.2019.04.030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
42 Fu Z, Zhang S, Wang B, Huang W, Zheng L, Cheng A. Annexin A1: A double-edged sword as novel cancer biomarker. Clinica Chimica Acta 2020;504:36-42. [DOI: 10.1016/j.cca.2020.01.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
43 Radzieta M, Peters TJ, Dickson HG, Cowin AJ, Lavery LA, Schwarzer S, Roberts T, Jensen SO, Malone M. A metatranscriptomic approach to explore longitudinal tissue specimens from non-healing diabetes related foot ulcers. APMIS 2022;130:383-96. [PMID: 35394091 DOI: 10.1111/apm.13226] [Reference Citation Analysis]
44 Wen W, Chen J, Zhou Y, Li G, Zhang Y. Loss of Ripk3 attenuated neutrophil accumulation in a lipopolysaccharide-induced zebrafish inflammatory model. Cell Death Discov 2022;8. [DOI: 10.1038/s41420-022-00891-z] [Reference Citation Analysis]
45 Fischer TF, Beck-Sickinger AG. Chemerin - exploring a versatile adipokine. Biol Chem 2022. [PMID: 35040613 DOI: 10.1515/hsz-2021-0409] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Yu Y, Xue S, Chen K, Le Y, Zhu R, Wang S, Liu S, Cheng X, Guan H, Wang JM, Chen H. The G-protein-coupled chemoattractant receptor Fpr2 exacerbates neuroglial dysfunction and angiogenesis in diabetic retinopathy. FASEB Bioadv 2020;2:613-23. [PMID: 33089077 DOI: 10.1096/fba.2020-00034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Kumar V. Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019;73:128-45. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
48 Wang H, Peng X, Ge Y, Zhang S, Wang Z, Fan Y, Huang W, Qiu M, Ye RD. A Ganoderma-Derived Compound Exerts Inhibitory Effect Through Formyl Peptide Receptor 2. Front Pharmacol 2020;11:337. [PMID: 32265709 DOI: 10.3389/fphar.2020.00337] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
49 Tizard I, Skow L. The olfactory system: the remote-sensing arm of the immune system. Anim Health Res Rev 2021;22:14-25. [PMID: 33926605 DOI: 10.1017/S1466252320000262] [Reference Citation Analysis]
50 Kuley R, Stultz RD, Duvvuri B, Wang T, Fritzler MJ, Hesselstrand R, Nelson JL, Lood C. N-Formyl Methionine Peptide-Mediated Neutrophil Activation in Systemic Sclerosis. Front Immunol 2021;12:785275. [PMID: 35069556 DOI: 10.3389/fimmu.2021.785275] [Reference Citation Analysis]
51 Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021;383:367-86. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Schlatterer K, Beck C, Schoppmeier U, Peschel A, Kretschmer D. Acetate sensing by GPR43 alarms neutrophils and protects from severe sepsis. Commun Biol 2021;4:928. [PMID: 34330996 DOI: 10.1038/s42003-021-02427-0] [Reference Citation Analysis]
53 Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020;19:253-75. [DOI: 10.1038/s41573-019-0054-z] [Cited by in Crossref: 124] [Cited by in F6Publishing: 109] [Article Influence: 62.0] [Reference Citation Analysis]
54 Gonzalez-Aparicio M, Alfaro C. Influence of Interleukin-8 and Neutrophil Extracellular Trap (NET) Formation in the Tumor Microenvironment: Is There a Pathogenic Role? J Immunol Res 2019;2019:6252138. [PMID: 31093511 DOI: 10.1155/2019/6252138] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
55 Cuomo P, Papaianni M, Capparelli R, Medaglia C. The Role of Formyl Peptide Receptors in Permanent and Low-Grade Inflammation: Helicobacter pylori Infection as a Model. Int J Mol Sci 2021;22:3706. [PMID: 33918194 DOI: 10.3390/ijms22073706] [Reference Citation Analysis]
56 Pan X, Zhu J, Xu Z, Xiao Q, Zhou X, Xu K, Li C, Jiang Y, Wang Y, Xue Z, Lei P, He Y. 68Ga-WRWWWW Is a Potential Positron Emission Tomography Probe for Imaging Inflammatory Diseases by Targeting Formyl Peptide Receptor 2. Mol Pharm 2022. [PMID: 35393860 DOI: 10.1021/acs.molpharmaceut.1c00922] [Reference Citation Analysis]
57 Pouwels SD, Wiersma VR, Fokkema IE, Berg M, Ten Hacken NHT, van den Berge M, Heijink I, Faiz A. Acute cigarette smoke-induced eQTL affects formyl peptide receptor expression and lung function. Respirology 2021;26:233-40. [PMID: 33078507 DOI: 10.1111/resp.13960] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
58 Mao C, Xu X, Ding Y, Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine. Front Med (Lausanne) 2021;8:735590. [PMID: 34660642 DOI: 10.3389/fmed.2021.735590] [Reference Citation Analysis]
59 Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021;167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Reference Citation Analysis]
60 Zhang D, Frenette PS. Cross talk between neutrophils and the microbiota. Blood 2019;133:2168-77. [PMID: 30898860 DOI: 10.1182/blood-2018-11-844555] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
61 Bufe B, Teuchert Y, Schmid A, Pyrski M, Pérez-Gómez A, Eisenbeis J, Timm T, Ishii T, Lochnit G, Bischoff M, Mombaerts P, Leinders-Zufall T, Zufall F. Bacterial MgrB peptide activates chemoreceptor Fpr3 in mouse accessory olfactory system and drives avoidance behaviour. Nat Commun 2019;10:4889. [PMID: 31653840 DOI: 10.1038/s41467-019-12842-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
62 Ammendola R, Parisi M, Esposito G, Cattaneo F. Pro-Resolving FPR2 Agonists Regulate NADPH Oxidase-Dependent Phosphorylation of HSP27, OSR1, and MARCKS and Activation of the Respective Upstream Kinases. Antioxidants (Basel) 2021;10:134. [PMID: 33477989 DOI: 10.3390/antiox10010134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
63 Korimová A, Dubový P. N-Formylated Peptide Induces Increased Expression of Both Formyl Peptide Receptor 2 (Fpr2) and Toll-Like Receptor 9 (TLR9) in Schwannoma Cells-An In Vitro Model for Early Inflammatory Profiling of Schwann Cells. Cells 2020;9:E2661. [PMID: 33322305 DOI: 10.3390/cells9122661] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Annunziata MC, Parisi M, Esposito G, Fabbrocini G, Ammendola R, Cattaneo F. Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling. Int J Mol Sci 2020;21:E3818. [PMID: 32471307 DOI: 10.3390/ijms21113818] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
65 Zhuang Y, Wang L, Guo J, Sun D, Wang Y, Liu W, Xu HE, Zhang C. Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nat Commun 2022;13:1054. [PMID: 35217703 DOI: 10.1038/s41467-022-28586-0] [Reference Citation Analysis]
66 Cammalleri M, Dal Monte M, Pavone V, De Rosa M, Rusciano D, Bagnoli P. The uPAR System as a Potential Therapeutic Target in the Diseased Eye. Cells 2019;8:E925. [PMID: 31426601 DOI: 10.3390/cells8080925] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
67 Marutani T, Nishino K, Miyaji T, Kamada K, Ohura K, Kiso Y, Mukai H. Mitocryptide-2: Identification of Its Minimum Structure for Specific Activation of FPR2-Possible Receptor Switching from FPR2 to FPR1 by Its Physiological C-terminal Cleavages. Int J Mol Sci 2021;22:4084. [PMID: 33920954 DOI: 10.3390/ijms22084084] [Reference Citation Analysis]
68 Wendell SG, Fan H, Zhang C. G Protein-Coupled Receptors in Asthma Therapy: Pharmacology and Drug Action. Pharmacol Rev 2020;72:1-49. [PMID: 31767622 DOI: 10.1124/pr.118.016899] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
69 Zhu J, Li L, Ding J, Huang J, Shao A, Tang B. The Role of Formyl Peptide Receptors in Neurological Diseases via Regulating Inflammation. Front Cell Neurosci 2021;15:753832. [PMID: 34650406 DOI: 10.3389/fncel.2021.753832] [Reference Citation Analysis]
70 Busch L, Vieten S, Brödel S, Endres K, Bufe B. Emerging contributions of formyl peptide receptors to neurodegenerative diseases. Biol Chem 2021. [PMID: 34505459 DOI: 10.1515/hsz-2021-0258] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]