BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lancaster JN, Li Y, Ehrlich LIR. Chemokine-Mediated Choreography of Thymocyte Development and Selection. Trends Immunol 2018;39:86-98. [PMID: 29162323 DOI: 10.1016/j.it.2017.10.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Abe S, Onoda R, Furushima D, Yamada H, Tamura Y, Sayama K. Detection of CCL25 and the correlation between CCL25, CCL28, IL-7, and TSLP in human breast milk. J Reprod Immunol 2023;155:103783. [PMID: 36528910 DOI: 10.1016/j.jri.2022.103783] [Reference Citation Analysis]
2 Sachi N, Kamiyama N, Saechue B, Ozaka S, Dewayani A, Ariki S, Chalalai T, Soga Y, Fukuda C, Kagoshima Y, Ekronarongchai S, Kobayashi T. CCL20/CCR6 chemokine signaling is not essential for pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochem Biophys Res Commun 2023;641:123-31. [PMID: 36527746 DOI: 10.1016/j.bbrc.2022.11.088] [Reference Citation Analysis]
3 Bulygin AS, Khantakova JN, Shkaruba NS, Shiku H, Sennikov SS. The role of metabolism on regulatory T cell development and its impact in tumor and transplantation immunity. Front Immunol 2022;13:1016670. [PMID: 36569866 DOI: 10.3389/fimmu.2022.1016670] [Reference Citation Analysis]
4 García-Ceca J, Montero-Herradón S, González A, Plaza R, Zapata AG. Altered thymocyte development observed in EphA4-deficient mice courses with changes in both thymic epithelial and extracellular matrix organization. Cell Mol Life Sci 2022;79:583. [PMID: 36334147 DOI: 10.1007/s00018-022-04610-w] [Reference Citation Analysis]
5 Mohammed A, Slepicka PF, Solomon B, Hubka KM, Nguyen HD, Chavez MG, Yeh CY, Winn VD, Gifford CA, Khatri P, Gentles A, Weinacht KG. Single cell transcriptomics of human prenatal anterior foregut-derived organs identifies distinct developmental signatures directing commitment and specialization of the thymic epithelial stroma.. [DOI: 10.1101/2022.10.02.510339] [Reference Citation Analysis]
6 Rubin SA, Baron CS, Pessoa Rodrigues C, Duran M, Corbin AF, Yang SP, Trapnell C, Zon LI. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish. J Exp Med 2022;219:e20220038. [PMID: 35938989 DOI: 10.1084/jem.20220038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Lancaster JN, Keatinge-Clay DE, Srinivasan J, Li Y, Selden HJ, Nam S, Richie ER, Ehrlich LIR. Central tolerance is impaired in the middle-aged thymic environment. Aging Cell 2022;21:e13624. [PMID: 35561351 DOI: 10.1111/acel.13624] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022;15:eabj9842. [PMID: 35639856 DOI: 10.1126/scisignal.abj9842] [Reference Citation Analysis]
9 Kissler S. Genetic Modifiers of Thymic Selection and Central Tolerance in Type 1 Diabetes. Front Immunol 2022;13:889856. [PMID: 35464420 DOI: 10.3389/fimmu.2022.889856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Li Y, Srinivasan J, Selden HJ, Ehrlich LI. CCR4 and CCR7 differentially regulate thymocyte subset localization with distinct outcomes for central tolerance.. [DOI: 10.1101/2022.04.03.486911] [Reference Citation Analysis]
11 Srinivasan J, Vasudev A, Selden HJ, Perez E, Lafleur B, Sinari SA, Krueger A, Richie ER, Ehrlich LIR. An early decline in ETPs reflects fewer pre-thymic progenitors and altered signals from the thymus microenvironment.. [DOI: 10.1101/2022.01.18.476832] [Reference Citation Analysis]
12 Lancaster JN, Keatinge-clay DL, Srinivasan J, Li Y, Selden HJ, Nam S, Richie ER, Ehrlich LIR. Central tolerance is impaired in the middle-aged thymic environment.. [DOI: 10.1101/2022.01.17.476690] [Reference Citation Analysis]
13 Lyu A, Nam SH, Humphrey RS, Durham TA, Hu Z, Arasappan D, Horton TM, Ehrlich LIR. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia.. [DOI: 10.1101/2022.01.05.475106] [Reference Citation Analysis]
14 Liu C, Ma L, Wang Y, Zhao J, Chen P, Chen X, Wang Y, Hu Y, Liu Y, Jia X, Yang Z, Yin X, Wu J, Wu S, Zheng H, Ma X, Sun X, He Y, Lin L, Fu Y, Liao K, Zhou X, Jiang S, Fu G, Tang J, Han W, Chen XL, Fan W, Hong Y, Han J, Huang X, Li BA, Xiao N, Xiao C, Fu G, Liu WH. Glycogen synthase kinase 3 drives thymocyte egress by suppressing β-catenin activation of Akt. Sci Adv 2021;7:eabg6262. [PMID: 34623920 DOI: 10.1126/sciadv.abg6262] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Montero-Herradón S, Zapata AG. Delayed maturation of thymic epithelium in mice with specific deletion of β-catenin gene in FoxN1 positive cells. Histochem Cell Biol 2021. [PMID: 34254201 DOI: 10.1007/s00418-021-02012-w] [Reference Citation Analysis]
16 Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021;12:676236. [PMID: 33968086 DOI: 10.3389/fimmu.2021.676236] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021;43:45-64. [PMID: 33537838 DOI: 10.1007/s00281-021-00842-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
18 Wardell CM, MacDonald KN, Levings MK, Cook L. Cross talk between human regulatory T cells and antigen-presenting cells: Lessons for clinical applications. Eur J Immunol 2021;51:27-38. [PMID: 33301176 DOI: 10.1002/eji.202048746] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
19 Du X, Zeng H, Liu S, Guy C, Dhungana Y, Neale G, Bergo MO, Chi H. Mevalonate metabolism-dependent protein geranylgeranylation regulates thymocyte egress. J Exp Med 2020;217:e20190969. [PMID: 31722972 DOI: 10.1084/jem.20190969] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Ronza P, Robledo D, Losada AP, Bermúdez R, Pardo BG, Martínez P, Quiroga MI. The Teleost Thymus in Health and Disease: New Insights from Transcriptomic and Histopathological Analyses of Turbot, Scophthalmus maximus. Biology (Basel) 2020;9:E221. [PMID: 32823553 DOI: 10.3390/biology9080221] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
21 Erdinest N, London N, Solomon A. Chemokines in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2020;20:516-27. [PMID: 32739979 DOI: 10.1097/ACI.0000000000000676] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Vobořil M, Brabec T, Dobeš J, Šplíchalová I, Březina J, Čepková A, Dobešová M, Aidarova A, Kubovčiak J, Tsyklauri O, Štěpánek O, Beneš V, Sedláček R, Klein L, Kolář M, Filipp D. Toll-like receptor signaling in thymic epithelium controls monocyte-derived dendritic cell recruitment and Treg generation. Nat Commun 2020;11:2361. [PMID: 32398640 DOI: 10.1038/s41467-020-16081-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
23 Malo CS, Hickman HD. Tracing Antiviral CD8+ T Cell Responses Using In Vivo Imaging. J Immunol 2019;203:775-81. [PMID: 31383748 DOI: 10.4049/jimmunol.1900232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
24 Salz A, Gurniak C, Jönsson F, Witke W. Cofilin1-driven actin dynamics controls migration of thymocytes and is essential for positive selection in the thymus. J Cell Sci 2020;133:jcs238048. [PMID: 31974112 DOI: 10.1242/jcs.238048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Mempel TR, Marangoni F. Guidance factors orchestrating regulatory T cell positioning in tissues during development, homeostasis, and response. Immunol Rev 2019;289:129-41. [PMID: 30977195 DOI: 10.1111/imr.12761] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
26 Motazedian A, Bruveris FF, Kumar SV, Schiesser JV, Chen T, Ng ES, Chidgey AP, Wells CA, Elefanty AG, Stanley EG. Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat Cell Biol 2020;22:60-73. [DOI: 10.1038/s41556-019-0445-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
27 Dubyak GR. GPCRs in innate and adaptive immune responses. GPCRs 2020. [DOI: 10.1016/b978-0-12-816228-6.00021-0] [Reference Citation Analysis]
28 Nowell CS, O’neill KE, Rouse P, Henderson T, Richie ER, Manley NR, Blackburn CC. Thymus and parathyroid organogenesis. Principles of Tissue Engineering 2020. [DOI: 10.1016/b978-0-12-818422-6.00038-1] [Reference Citation Analysis]
29 Kadakia T, Tai X, Kruhlak M, Wisniewski J, Hwang IY, Roy S, Guinter TI, Alag A, Kehrl JH, Zhuang Y, Singer A. E-protein-regulated expression of CXCR4 adheres preselection thymocytes to the thymic cortex. J Exp Med 2019;216:1749-61. [PMID: 31201207 DOI: 10.1084/jem.20182285] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
30 Lancaster JN, Thyagarajan HM, Srinivasan J, Li Y, Hu Z, Ehrlich LIR. Live-cell imaging reveals the relative contributions of antigen-presenting cell subsets to thymic central tolerance. Nat Commun 2019;10:2220. [PMID: 31101805 DOI: 10.1038/s41467-019-09727-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
31 Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance: Lessons from Mice. Trends Immunol 2019;40:279-91. [PMID: 30803714 DOI: 10.1016/j.it.2019.01.011] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
32 Konishi Y, Terai K, Furuta Y, Kiyonari H, Abe T, Ueda Y, Kinashi T, Hamazaki Y, Takaori-Kondo A, Matsuda M. Live-Cell FRET Imaging Reveals a Role of Extracellular Signal-Regulated Kinase Activity Dynamics in Thymocyte Motility. iScience 2018;10:98-113. [PMID: 30508722 DOI: 10.1016/j.isci.2018.11.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
33 Thyagarajan HM, Lancaster JN, Lira SA, Ehrlich LIR. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS One 2018;13:e0200765. [PMID: 30024927 DOI: 10.1371/journal.pone.0200765] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
34 Aili A, Zhang J, Wu J, Wu H, Sun X, He Q, Jin R, Zhang Y. CCR2 Signal Facilitates Thymic Egress by Priming Thymocyte Responses to Sphingosine-1-Phosphate. Front Immunol 2018;9:1263. [PMID: 29930553 DOI: 10.3389/fimmu.2018.01263] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
35 Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. [PMID: 29637711 DOI: 10.1111/febs.14466] [Cited by in Crossref: 413] [Cited by in F6Publishing: 440] [Article Influence: 82.6] [Reference Citation Analysis]
36 Aghaallaei N, Bajoghli B. Making Thymus Visible: Understanding T-Cell Development from a New Perspective. Front Immunol 2018;9:375. [PMID: 29552011 DOI: 10.3389/fimmu.2018.00375] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]