BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hoare BL, Bruell S, Sethi A, Gooley PR, Lew MJ, Hossain MA, Inoue A, Scott DJ, Bathgate RAD. Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis. iScience 2019;11:93-113. [PMID: 30594862 DOI: 10.1016/j.isci.2018.12.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin (2) G protein-coupled receptor. bioRxiv 2023:2023. [PMID: 36711519 DOI: 10.1101/2023.01.13.523955] [Reference Citation Analysis]
2 Samuel CS, Li Y, Wang Y, Widdop RE. Functional crosstalk between angiotensin receptors (types 1 and 2) and relaxin family peptide receptor 1 (RXFP1): Implications for the therapeutic targeting of fibrosis. Br J Pharmacol 2022. [PMID: 36560925 DOI: 10.1111/bph.16019] [Reference Citation Analysis]
3 Grätz L, Müller C, Pegoli A, Schindler L, Bernhardt G, Littmann T. Insertion of Nanoluc into the Extracellular Loops as a Complementary Method To Establish BRET-Based Binding Assays for GPCRs. ACS Pharmacol Transl Sci 2022;5:1142-1155. [DOI: 10.1021/acsptsci.2c00162] [Reference Citation Analysis]
4 Dale NC, White CW, Johnstone EK, Pfleger KD. Bioluminescence Resonance Energy Transfer ( BRET ) Technologies to Study GPCRs. GPCRs as Therapeutic Targets 2022. [DOI: 10.1002/9781119564782.ch23] [Reference Citation Analysis]
5 Sethi A, Bruell S, Ryan T, Yan F, Tanipour MH, Mok YF, Draper-Joyce C, Khandokar Y, Metcalfe RD, Griffin MDW, Scott DJ, Hossain MA, Petrie EJ, Bathgate RAD, Gooley PR. Structural Insights into the Unique Modes of Relaxin-Binding and Tethered-Agonist Mediated Activation of RXFP1 and RXFP2. J Mol Biol 2021;433:167217. [PMID: 34454945 DOI: 10.1016/j.jmb.2021.167217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Veenstra JA. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from insulin-like growth factor. PeerJ 2021;9:e11799. [PMID: 34316411 DOI: 10.7717/peerj.11799] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Sethi A, Bruell S, Ryan T, Yan F, Tanipour M, Mok Y, Draper-joyce C, Khandokar Y, Metcalfe RD, Griffin MDW, Scott DJ, Hossain MA, Petrie EJ, Bathgate RAD, Gooley PR. Structural insights into the modes of relaxin-binding and tethered-agonist activation of RXFP1 and RXFP2.. [DOI: 10.1101/2021.06.06.446989] [Reference Citation Analysis]
8 Veenstra JA. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from Insulin-like Growth Factor.. [DOI: 10.1101/2021.04.15.440029] [Reference Citation Analysis]
9 Chakraborty A, Pinar AA, Lam M, Bourke JE, Royce SG, Selomulya C, Samuel CS. Pulmonary myeloid cell uptake of biodegradable nanoparticles conjugated with an anti-fibrotic agent provides a novel strategy for treating chronic allergic airways disease. Biomaterials 2021;273:120796. [PMID: 33894403 DOI: 10.1016/j.biomaterials.2021.120796] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
10 Xie H, Zhang JF, Li Q. Identification and analysis of genes associated with lung adenocarcinoma by integrated bioinformatics methods. Ann Hum Genet 2021;85:125-37. [PMID: 33847374 DOI: 10.1111/ahg.12418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021;50:5668-705. [DOI: 10.1039/d0cs01492c] [Cited by in Crossref: 44] [Cited by in F6Publishing: 51] [Article Influence: 22.0] [Reference Citation Analysis]
12 Grätz L, Laasfeld T, Allikalt A, Gruber CG, Pegoli A, Tahk MJ, Tsernant ML, Keller M, Rinken A. BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M2 muscarinic acetylcholine receptors. Biochim Biophys Acta Mol Cell Res 2021;1868:118930. [PMID: 33347921 DOI: 10.1016/j.bbamcr.2020.118930] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
13 Grätz L, Tropmann K, Bresinsky M, Müller C, Bernhardt G, Pockes S. NanoBRET binding assay for histamine H2 receptor ligands using live recombinant HEK293T cells. Sci Rep 2020;10:13288. [PMID: 32764682 DOI: 10.1038/s41598-020-70332-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
14 Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020;8:e1194. [PMID: 32100955 DOI: 10.1002/mgg3.1194] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
15 Soave M, Briddon SJ, Hill SJ, Stoddart LA. Fluorescent ligands: Bringing light to emerging GPCR paradigms. Br J Pharmacol 2020;177:978-91. [PMID: 31877233 DOI: 10.1111/bph.14953] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
16 Gherbi K, Groenewoud NJ, Holliday ND, Sengmany K, Charlton SJ. Kinetics of ligand binding and signaling. GPCRs 2020. [DOI: 10.1016/b978-0-12-816228-6.00010-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Hoare BL, Kocan M, Bruell S, Scott DJ, Bathgate RAD. Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis. Pharmacol Res Perspect 2019;7:e00513. [PMID: 31384473 DOI: 10.1002/prp2.513] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
18 Weihs F, Dacres H. Red-shifted bioluminescence Resonance Energy Transfer: Improved tools and materials for analytical in vivo approaches. TrAC Trends in Analytical Chemistry 2019;116:61-73. [DOI: 10.1016/j.trac.2019.04.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
19 Dale NC, Johnstone EKM, White CW, Pfleger KDG. NanoBRET: The Bright Future of Proximity-Based Assays. Front Bioeng Biotechnol 2019;7:56. [PMID: 30972335 DOI: 10.3389/fbioe.2019.00056] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 16.5] [Reference Citation Analysis]