BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Śledzińska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF, Ghorani E, Akarca AU, Marzolini MAV, Solomon I, Vargas FA, Pule M, Ono M, Seddon B, Kassiotis G, Ariyan CE, Korn T, Marafioti T, Lord GM, Stauss H, Jenner RG, Peggs KS, Quezada SA. Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4+ T Cells. Immunity 2020;52:151-166.e6. [PMID: 31924474 DOI: 10.1016/j.immuni.2019.12.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Cenerenti M, Saillard M, Romero P, Jandus C. The Era of Cytotoxic CD4 T Cells. Front Immunol 2022;13:867189. [PMID: 35572552 DOI: 10.3389/fimmu.2022.867189] [Reference Citation Analysis]
2 Liu J, Yin W, Westerberg LS, Lee P, Gong Q, Chen Y, Dong L, Liu C. Immune Dysregulation in IgG4-Related Disease. Front Immunol 2021;12:738540. [PMID: 34539675 DOI: 10.3389/fimmu.2021.738540] [Reference Citation Analysis]
3 Tan WCC, Nerurkar SN, Cai HY, Ng HHM, Wu D, Wee YTF, Lim JCT, Yeong J, Lim TKH. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun (Lond) 2020;40:135-53. [PMID: 32301585 DOI: 10.1002/cac2.12023] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 26.5] [Reference Citation Analysis]
4 Sutra Del Galy A, Menegatti S, Fuentealba J, Lucibello F, Perrin L, Helft J, Darbois A, Saitakis M, Tosello J, Rookhuizen D, Deloger M, Gestraud P, Socié G, Amigorena S, Lantz O, Menger L. In vivo genome-wide CRISPR screens identify SOCS1 as intrinsic checkpoint of CD4+ TH1 cell response. Sci Immunol 2021;6:eabe8219. [PMID: 34860579 DOI: 10.1126/sciimmunol.abe8219] [Reference Citation Analysis]
5 Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021;12:658611. [PMID: 34012443 DOI: 10.3389/fimmu.2021.658611] [Reference Citation Analysis]
6 Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Res Rev 2021;65:101231. [PMID: 33248315 DOI: 10.1016/j.arr.2020.101231] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
7 Abbas HA, Alaniz Z, Mackay S, Cyr M, Zhou J, Issa GC, Alfayez M, Matthews J, Kornblau SM, Jabbour E, Garcia-Manero G, Konopleva M, Andreeff M, Daver N. Single-cell polyfunctional proteomics of CD4 cells from patients with AML predicts responses to anti-PD-1-based therapy. Blood Adv 2021;5:4569-74. [PMID: 34555853 DOI: 10.1182/bloodadvances.2021004583] [Reference Citation Analysis]
8 Kim SI, Cassella CR, Byrne KT. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front Immunol 2020;11:629722. [PMID: 33597954 DOI: 10.3389/fimmu.2020.629722] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Shang Q, Dong Y, Su Y, Leslie F, Sun M, Wang F. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Adv Drug Deliv Rev 2022;185:114308. [PMID: 35472398 DOI: 10.1016/j.addr.2022.114308] [Reference Citation Analysis]
10 Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021;176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
11 Dersh D, Hollý J, Yewdell JW. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 2021;21:116-28. [PMID: 32820267 DOI: 10.1038/s41577-020-0390-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
12 Uhl LFK, Gérard A. Modes of Communication between T Cells and Relevance for Immune Responses. Int J Mol Sci 2020;21:E2674. [PMID: 32290500 DOI: 10.3390/ijms21082674] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Visvabharathy L, Hanson B, Orban Z, Lim PH, Palacio N, Jain R, Liotta EM, Penaloza-MacMaster P, Koralnik IJ. Neuro-COVID long-haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination. medRxiv 2021:2021. [PMID: 34401886 DOI: 10.1101/2021.08.08.21261763] [Reference Citation Analysis]
14 Qi J, Liu X, Yan P, He S, Lin Y, Huang Z, Zhang S, Xie S, Li Y, Lu X, Wu Y, Zhou Y, Yuan J, Cai T, Zheng X, Ding Y, Yang W. Analysis of Immune Landscape Reveals Prognostic Significance of Cytotoxic CD4+ T Cells in the Central Region of pMMR CRC. Front Oncol 2021;11:724232. [PMID: 34631551 DOI: 10.3389/fonc.2021.724232] [Reference Citation Analysis]
15 Xie W, Shen J, Wang D, Guo J, Li Q, Wen S, Dai W, Wen L, Lu H, Fang J, Wang Z. Dynamic changes of exhaustion features in T cells during oral carcinogenesis. Cell Prolif 2022;:e13207. [PMID: 35179267 DOI: 10.1111/cpr.13207] [Reference Citation Analysis]
16 Snell LM, Xu W, Abd-Rabbo D, Boukhaled G, Guo M, Macleod BL, Elsaesser HJ, Hezaveh K, Alsahafi N, Lukhele S, Nejat S, Prabhakaran R, Epelman S, McGaha TL, Brooks DG. Dynamic CD4+ T cell heterogeneity defines subset-specific suppression and PD-L1-blockade-driven functional restoration in chronic infection. Nat Immunol 2021;22:1524-37. [PMID: 34795443 DOI: 10.1038/s41590-021-01060-7] [Reference Citation Analysis]
17 Jones DM, Read KA, Oestreich KJ. Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4+ T Cell Populations. J Immunol 2020;205:1721-30. [PMID: 32958706 DOI: 10.4049/jimmunol.2000612] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Lucca LE, Dominguez-Villar M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 2020;20:680-93. [PMID: 32269380 DOI: 10.1038/s41577-020-0296-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
19 Negi S, Saini S, Tandel N, Sahu K, Mishra RPN, Tyagi RK. Translating Treg Therapy for Inflammatory Bowel Disease in Humanized Mice. Cells 2021;10:1847. [PMID: 34440615 DOI: 10.3390/cells10081847] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jacquier A, Lambert T, Delattre JF, Djouadou M, Vérine J, Dumont C, Desgrandchamps F, Carosella ED, LeMaoult J, Rouas-Freiss N. Tumor infiltrating and peripheral CD4+ILT2+ T cells are a cytotoxic subset selectively inhibited by HLA-G in clear cell renal cell carcinoma patients. Cancer Lett 2021;519:105-16. [PMID: 34186161 DOI: 10.1016/j.canlet.2021.06.018] [Reference Citation Analysis]
21 Jurj A, Pasca S, Braicu C, Rusu I, Korban SS, Berindan-Neagoe I. Focus on organoids: cooperation and interconnection with extracellular vesicles - is this the future of in vitro modeling? Semin Cancer Biol 2021:S1044-579X(21)00295-9. [PMID: 34896267 DOI: 10.1016/j.semcancer.2021.12.002] [Reference Citation Analysis]
22 Strazza M, Bukhari S, Tocheva AS, Mor A. PD-1-induced proliferating T cells exhibit a distinct transcriptional signature. Immunology 2021. [PMID: 34164813 DOI: 10.1111/imm.13388] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ulmert I, Henriques-Oliveira L, Pereira CF, Lahl K. Mononuclear phagocyte regulation by the transcription factor Blimp-1 in health and disease. Immunology 2020;161:303-13. [PMID: 32799350 DOI: 10.1111/imm.13249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Wu YJ, Nai AT, He GC, Xiao F, Li ZM, Tang SY, Liu YP, Ai XH. DPYSL2 as potential diagnostic and prognostic biomarker linked to immune infiltration in lung adenocarcinoma. World J Surg Oncol 2021;19:274. [PMID: 34517904 DOI: 10.1186/s12957-021-02379-z] [Reference Citation Analysis]
25 Cachot A, Bilous M, Liu YC, Li X, Saillard M, Cenerenti M, Rockinger GA, Wyss T, Guillaume P, Schmidt J, Genolet R, Ercolano G, Protti MP, Reith W, Ioannidou K, de Leval L, Trapani JA, Coukos G, Harari A, Speiser DE, Mathis A, Gfeller D, Altug H, Romero P, Jandus C. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci Adv 2021;7:eabe3348. [PMID: 33637530 DOI: 10.1126/sciadv.abe3348] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
26 Vincenti I, Merkler D. New advances in immune components mediating viral control in the CNS. Curr Opin Virol 2021;47:68-78. [PMID: 33636592 DOI: 10.1016/j.coviro.2021.02.001] [Reference Citation Analysis]
27 Balta E, Wabnitz GH, Samstag Y. Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors. Int J Mol Sci 2021;22:5736. [PMID: 34072260 DOI: 10.3390/ijms22115736] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kerdidani D, Aerakis E, Verrou KM, Angelidis I, Douka K, Maniou MA, Stamoulis P, Goudevenou K, Prados A, Tzaferis C, Ntafis V, Vamvakaris I, Kaniaris E, Vachlas K, Sepsas E, Koutsopoulos A, Potaris K, Tsoumakidou M. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J Exp Med 2022;219:e20210815. [PMID: 35029648 DOI: 10.1084/jem.20210815] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
29 Clubb JHA, Kudling TV, Heiniö C, Basnet S, Pakola S, Cervera Carrascón V, Santos JM, Quixabeira DCA, Havunen R, Sorsa S, Zheng V, Salo T, Bäck L, Aro K, Tulokas S, Loimu V, Hemminki A. Adenovirus Encoding Tumor Necrosis Factor Alpha and Interleukin 2 Induces a Tertiary Lymphoid Structure Signature in Immune Checkpoint Inhibitor Refractory Head and Neck Cancer. Front Immunol 2022;13:794251. [DOI: 10.3389/fimmu.2022.794251] [Reference Citation Analysis]
30 [DOI: 10.1101/2020.03.10.985614] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Jia Q, Chu H, Jin Z, Long H, Zhu B. High-throughput single-сell sequencing in cancer research. Signal Transduct Target Ther 2022;7:145. [PMID: 35504878 DOI: 10.1038/s41392-022-00990-4] [Reference Citation Analysis]
32 Danelli L, Cornish G, Merkenschlager J, Kassiotis G. Default polyfunctional T helper 1 response to ample signal 1 alone. Cell Mol Immunol 2021;18:1809-22. [PMID: 32313208 DOI: 10.1038/s41423-020-0415-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020;21:E8011. [PMID: 33126494 DOI: 10.3390/ijms21218011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
34 Schroeder J, Howard JK, Lord GM. Transcription factor-driven regulation of ILC1 and ILC3. Trends in Immunology 2022. [DOI: 10.1016/j.it.2022.04.009] [Reference Citation Analysis]
35 Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021;21:481-99. [PMID: 34083781 DOI: 10.1038/s41568-021-00363-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
36 Dersh D, Phelan JD, Gumina ME, Wang B, Arbuckle JH, Holly J, Kishton RJ, Markowitz TE, Seedhom MO, Fridlyand N, Wright GW, Huang DW, Ceribelli M, Thomas CJ, Lack JB, Restifo NP, Kristie TM, Staudt LM, Yewdell JW. Genome-wide Screens Identify Lineage- and Tumor-Specific Genes Modulating MHC-I- and MHC-II-Restricted Immunosurveillance of Human Lymphomas. Immunity 2021;54:116-131.e10. [PMID: 33271120 DOI: 10.1016/j.immuni.2020.11.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
37 Oh DY, Fong L. Cytotoxic CD4+ T cells in cancer: Expanding the immune effector toolbox. Immunity 2021;54:2701-11. [PMID: 34910940 DOI: 10.1016/j.immuni.2021.11.015] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I Interferons in Cancer Immunity. Annu Rev Pathol 2021;16:167-98. [PMID: 33264572 DOI: 10.1146/annurev-pathol-031920-093932] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
39 Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021;21:360-78. [PMID: 33907315 DOI: 10.1038/s41568-021-00346-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 25] [Article Influence: 15.0] [Reference Citation Analysis]
40 Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020;19:116. [PMID: 32680511 DOI: 10.1186/s12943-020-01234-1] [Cited by in Crossref: 37] [Cited by in F6Publishing: 49] [Article Influence: 18.5] [Reference Citation Analysis]
41 Saillard M, Cenerenti M, Romero P, Jandus C. Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021;9:454. [PMID: 34064410 DOI: 10.3390/vaccines9050454] [Reference Citation Analysis]
42 Schad SE, Chow A, Mangarin L, Pan H, Zhang J, Ceglia N, Caushi JX, Malandro N, Zappasodi R, Gigoux M, Hirschhorn D, Budhu S, Amisaki M, Arniella M, Redmond D, Chaft J, Forde PM, Gainor JF, Hellmann MD, Balachandran V, Shah S, Smith KN, Pardoll D, Elemento O, Wolchok JD, Merghoub T. Tumor-induced double positive T cells display distinct lineage commitment mechanisms and functions. J Exp Med 2022;219:e20212169. [PMID: 35604411 DOI: 10.1084/jem.20212169] [Reference Citation Analysis]
43 Li T, Wu B, Yang T, Zhang L, Jin K. The outstanding antitumor capacity of CD4+ T helper lymphocytes. Biochim Biophys Acta Rev Cancer 2020;1874:188439. [PMID: 32980465 DOI: 10.1016/j.bbcan.2020.188439] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
44 Jiang X, Liang L, Chen G, Liu C. Modulation of Immune Components on Stem Cell and Dormancy in Cancer. Cells 2021;10:2826. [PMID: 34831048 DOI: 10.3390/cells10112826] [Reference Citation Analysis]
45 Yang D, Zhang Z. [The role of helper T cell in the pathogenesis of osteoarthritis]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2020;34:932-8. [PMID: 32666741 DOI: 10.7507/1002-1892.201910063] [Reference Citation Analysis]
46 Sacher AG, St. Paul M, Paige CJ, Ohashi PS. Cytotoxic CD4+ T Cells in Bladder Cancer—A New License to Kill. Cancer Cell 2020;38:28-30. [DOI: 10.1016/j.ccell.2020.06.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Preglej T, Ellmeier W. CD4+ Cytotoxic T cells - Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunol Lett 2022:S0165-2478(22)00062-1. [PMID: 35568324 DOI: 10.1016/j.imlet.2022.05.001] [Reference Citation Analysis]
48 Tan J, Ding B, Teng B, Ma P, Lin J. Understanding Structure–Function Relationships of Nanoadjuvants for Enhanced Cancer Vaccine Efficacy. Adv Funct Materials 2022;32:2111670. [DOI: 10.1002/adfm.202111670] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]