BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Luo X, Wang Q, Fang D, Zhuang W, Chen C, Jiang W, Zheng Y. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. International Journal of Biological Macromolecules 2018;120:1461-7. [DOI: 10.1016/j.ijbiomac.2018.09.149] [Cited by in Crossref: 38] [Cited by in F6Publishing: 51] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Tian M, Pak S, Ma C, Ma L, Rengasamy KRR, Xiao J, Hu X, Li D, Chen F. Chemical features and biological functions of water-insoluble dietary fiber in plant-based foods. Crit Rev Food Sci Nutr 2022;:1-15. [PMID: 36004568 DOI: 10.1080/10408398.2022.2110565] [Reference Citation Analysis]
2 Sang J, Li L, Wen J, Liu H, Wu J, Yu Y, Xu Y, Gu Q, Fu M, Lin X. Chemical composition, structural and functional properties of insoluble dietary fiber obtained from the Shatian pomelo peel sponge layer using different modification methods. LWT 2022;165:113737. [DOI: 10.1016/j.lwt.2022.113737] [Reference Citation Analysis]
3 Xia Y, Meng P, Liu S, Tan Z, Yang X, Liang L, Xie F, Zhang H, Wang G, Xiong Z, Lo J, Ai L. Structural and Potential Functional Properties of Alkali-Extracted Dietary Fiber From Antrodia camphorata. Front Microbiol 2022;13:921164. [DOI: 10.3389/fmicb.2022.921164] [Reference Citation Analysis]
4 Lin T, Wang Q, Zheng X, Chang Y, Cao H, Zheng Y. Investigation of the Structural, Thermal, and Physicochemical Properties of Nanocelluloses Extracted From Bamboo Shoot Processing Byproducts. Front Chem 2022;10:922437. [DOI: 10.3389/fchem.2022.922437] [Reference Citation Analysis]
5 Zhu R, Xu T, He B, Wang Y, Zhang L, Huang L. Modification of Artichoke Dietary Fiber by Superfine Grinding and High-Pressure Homogenization and Its Protection against Cadmium Poisoning in Rats. Foods 2022;11:1716. [PMID: 35741914 DOI: 10.3390/foods11121716] [Reference Citation Analysis]
6 Wang S, Fang Y, Xu Y, Zhu B, Piao J, Zhu L, Yao L, Liu K, Wang S, Zhang Q, Qin L, Wu J. The effects of different extraction methods on physicochemical, functional and physiological properties of soluble and insoluble dietary fiber from Rubus chingiiHu. fruits. Journal of Functional Foods 2022;93:105081. [DOI: 10.1016/j.jff.2022.105081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Cheng T, Liu C, Hu Z, Wang Z, Guo Z. Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber. Foods 2022;11:1433. [PMID: 35627001 DOI: 10.3390/foods11101433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li H, Zhao P, Zhuo S, Zhang T. Structural characterization, free radical scavenging activity and α-glucosidase inhibitory activity of insoluble dietary fiber from Pholiota nameko. Food Measure. [DOI: 10.1007/s11694-022-01409-y] [Reference Citation Analysis]
9 Liao A, Zhang J, Yang Z, Huang J, Pan L, Hou Y, Li X, Zhao P, Dong Y, Hu Z, Hui M. Structural, Physicochemical, and Functional Properties of Wheat Bran Insoluble Dietary Fiber Modified With Probiotic Fermentation. Front Nutr 2022;9:803440. [DOI: 10.3389/fnut.2022.803440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Fayaz G, Soleimanian Y, Mhamadi M, Turgeon SL, Khalloufi S. The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review. Comp Rev Food Sci Food Safe. [DOI: 10.1111/1541-4337.12934] [Reference Citation Analysis]
11 Zhang Z, Zhao L, Qu H, Zhou H, Yang H, Chen H. Physicochemical characterization, adsorption function and prebiotic effect of chitin-glucan complex from mushroom Coprinus comatus. Int J Biol Macromol 2022;206:255-63. [PMID: 35240205 DOI: 10.1016/j.ijbiomac.2022.02.152] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 He X, Dai T, Sun J, Liang R, Liu W, Chen M, Chen J, Liu C. Disintegrating the Structure and Improving the Functionalities of Pea Fiber by Industry-Scale Microfluidizer System. Foods 2022;11:418. [PMID: 35159568 DOI: 10.3390/foods11030418] [Reference Citation Analysis]
13 Feng X, Yu B, Regenstein JM, Wang L. Effect of particle size on composition, physicochemical, functional, and structural properties of insoluble dietary fiber concentrate from citrus peel. Food sci technol int . [DOI: 10.1177/10820132211063973] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Li Y, Niu L, Guo Q, Shi L, Deng X, Liu X, Xiao C. Effects of fermentation with lactic bacteria on the structural characteristics and physicochemical and functional properties of soluble dietary fiber from prosomillet bran. LWT 2022;154:112609. [DOI: 10.1016/j.lwt.2021.112609] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
15 Xue N, Svensson B, Bai Y. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1 → 6 linkages - A review. Carbohydr Polym 2022;275:118705. [PMID: 34742430 DOI: 10.1016/j.carbpol.2021.118705] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ma Q, Ma Z, Wang W, Mu J, Liu Y, Wang J, Stipkovits L, Hui X, Wu G, Sun J. The effects of enzymatic modification on the functional ingredient - Dietary fiber extracted from potato residue. LWT 2022;153:112511. [DOI: 10.1016/j.lwt.2021.112511] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wang X, Chen Y, Wang Y, Dai W, Piao C, Yu H. Characteristics of lipoxygenase-based and lipoxygenase-deficient soy yogurt with modified okara. Food Sci Biotechnol 2021;30:1675-84. [PMID: 34925942 DOI: 10.1007/s10068-021-01003-w] [Reference Citation Analysis]
18 Varghese SM, Bhosale YK, Aruna Nair UK, Hema V, Sinija VR. Valorisation and Characterization of Allium cepa var. aggregatum Biowastes for the Production of Microcrystalline Cellulose. Waste Biomass Valor. [DOI: 10.1007/s12649-021-01625-5] [Reference Citation Analysis]
19 Wang L, Tian Y, Chen Y, Chen J. Effects of acid treatment on the physicochemical and functional properties of wheat bran insoluble dietary fiber. Cereal Chem. [DOI: 10.1002/cche.10494] [Reference Citation Analysis]
20 He H, An F, Wang Y, Wu W, Huang Z, Song H. Effects of pretreatment, NaOH concentration, and extraction temperature on the cellulose from Lophatherum gracile Brongn. Int J Biol Macromol 2021;190:810-8. [PMID: 34530035 DOI: 10.1016/j.ijbiomac.2021.09.041] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
21 Zhao J, Wang S, Dong Z, Chen L, Li J, Shao T. Effect of substituting Pennisetum sinese with bamboo shoot shell (BSS) on aerobic stability and digestibility of ensiled total mixed ration. Italian Journal of Animal Science 2021;20:1706-15. [DOI: 10.1080/1828051x.2021.1892544] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Gan J, Xie L, Peng G, Xie J, Chen Y, Yu Q. Systematic review on modification methods of dietary fiber. Food Hydrocolloids 2021;119:106872. [DOI: 10.1016/j.foodhyd.2021.106872] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Peng G, Gan J, Dong R, Chen Y, Xie J, Huang Z, Gu Y, Huang D, Yu Q. Combined microwave and enzymatic treatment improve the release of insoluble bound phenolic compounds from the grapefruit peel insoluble dietary fiber. LWT 2021;149:111905. [DOI: 10.1016/j.lwt.2021.111905] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
24 Wang S, Sun W, Swallah MS, Amin K, Lyu B, Fan H, Zhang Z, Yu H. Preparation and characterization of soybean insoluble dietary fiber and its prebiotic effect on dyslipidemia and hepatic steatosis in high fat-fed C57BL/6J mice. Food Funct 2021. [PMID: 34369950 DOI: 10.1039/d1fo01050f] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
25 Rivas MÁ, Casquete R, Córdoba MG, Ruíz-Moyano S, Benito MJ, Pérez-Nevado F, Martín A. Chemical Composition and Functional Properties of Dietary Fibre Concentrates from Winemaking By-Products: Skins, Stems and Lees. Foods 2021;10:1510. [PMID: 34209134 DOI: 10.3390/foods10071510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
26 Yang T, Tang C. Holocellulose nanofibers from insoluble polysaccharides of okara by mild alkali planetary ball milling: Structural characteristics and emulsifying properties. Food Hydrocolloids 2021;115:106625. [DOI: 10.1016/j.foodhyd.2021.106625] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 Liu X, Suo K, Wang P, Li X, Hao L, Zhu J, Yi J, Kang Q, Huang J, Lu J. Modification of wheat bran insoluble and soluble dietary fibers with snail enzyme. Food Science and Human Wellness 2021;10:356-61. [DOI: 10.1016/j.fshw.2021.02.027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
28 Li Y, Chen M, Deng L, Liang Y, Liu Y, Liu W, Chen J, Liu C. Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. Journal of Food Engineering 2021;291:110228. [DOI: 10.1016/j.jfoodeng.2020.110228] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
29 Yang T, Yan H, Tang C. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara. Food Hydrocolloids 2021;111:106386. [DOI: 10.1016/j.foodhyd.2020.106386] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
30 Zhao J, Wang S, Dong Z, Chen L, Shao T. Partial substitution of whole-crop corn with bamboo shoot shell improves aerobic stability of total mixed ration silage without affecting in vitro digestibility. J Anim Physiol Anim Nutr (Berl) 2021;105:431-41. [PMID: 33462846 DOI: 10.1111/jpn.13476] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Wang K, Li M, Wang Y, Liu Z, Ni Y. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocolloids 2021;110:106162. [DOI: 10.1016/j.foodhyd.2020.106162] [Cited by in Crossref: 11] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
32 Wang X, Zhang Y, Li Y, Yu H, Wang Y, Piao C. Insoluble dietary fibre from okara (soybean residue) modified by yeast Kluyveromyces marxianus. LWT 2020;134:110252. [DOI: 10.1016/j.lwt.2020.110252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
33 Zhou D, Liu J, Liu S, Liu X, Tang X, Lv X. Characterisation of alkaline and enzymatic modified insoluble dietary fibre from Undaria pinnatifida. Int J Food Sci Technol 2020;55:3533-41. [DOI: 10.1111/ijfs.14686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Wang N, Wu L, Huang S, Zhang Y, Zhang F, Zheng J. Combination treatment of bamboo shoot dietary fiber and dynamic high-pressure microfluidization on rice starch: Influence on physicochemical, structural, and in vitro digestion properties. Food Chem 2021;350:128724. [PMID: 33293145 DOI: 10.1016/j.foodchem.2020.128724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
35 Ding Q, Li Z, Wu W, Su Y, Sun N, Luo L, Ma H, He R. Physicochemical and functional properties of dietary fiber from Nannochloropsis oceanica: A comparison of alkaline and ultrasonic-assisted alkaline extractions. LWT 2020;133:110080. [DOI: 10.1016/j.lwt.2020.110080] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
36 Jiang Y, Yin H, Zheng Y, Wang D, Liu Z, Deng Y, Zhao Y. Structure, physicochemical and bioactive properties of dietary fibers from Akebia trifoliata (Thunb.) Koidz. seeds using ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction. Food Research International 2020;136:109348. [DOI: 10.1016/j.foodres.2020.109348] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
37 Wang L, Shen C, Li C, Chen J. Physicochemical, functional, and antioxidant properties of dietary fiber from Rosa roxburghii Tratt fruit modified by physical, chemical, and biological enzyme treatments. J Food Process Preserv 2020;44. [DOI: 10.1111/jfpp.14858] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
38 Speroni CS, Bender ABB, Stiebe J, Ballus CA, Ávila PF, Goldbeck R, Morisso FDP, Silva LPD, Emanuelli T. Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT 2020;130:109526. [DOI: 10.1016/j.lwt.2020.109526] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
39 Wang N, Huang S, Zhang Y, Zhang F, Zheng J. Effect of supplementation by bamboo shoot insoluble dietary fiber on physicochemical and structural properties of rice starch. LWT 2020;129:109509. [DOI: 10.1016/j.lwt.2020.109509] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
40 Gan J, Huang Z, Yu Q, Peng G, Chen Y, Xie J, Nie S, Xie M. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids 2020;101:105549. [DOI: 10.1016/j.foodhyd.2019.105549] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
41 Zhang F, Yi W, Cao J, He K, Liu Y, Bai X. Microstructure characteristics of tea seed dietary fibre and its effect on cholesterol, glucose and nitrite ion adsorption capacities in vitro : a comparison study among different modifications. Int J Food Sci Technol 2020;55:1781-91. [DOI: 10.1111/ijfs.14465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
42 Gabiatti C, Neves IC, Lim L, Bohrer BM, Rodrigues RC, Prentice C. Characterization of dietary fiber from residual cellulose sausage casings using a combination of enzymatic treatment and high-speed homogenization. Food Hydrocolloids 2020;100:105398. [DOI: 10.1016/j.foodhyd.2019.105398] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
43 Zhao J, Dong Z, Chen L, Wang S, Shao T. The replacement of whole-plant corn with bamboo shoot shell on the fermentation quality, chemical composition, aerobic stability and in vitro digestibility of total mixed ration silage. Animal Feed Science and Technology 2020;259:114348. [DOI: 10.1016/j.anifeedsci.2019.114348] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
44 Yang L, Lin Q, Han L, Wang Z, Luo M, Kang W, Liu J, Wang J, Ma T, Liu H. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway. Food Funct 2020;11:5965-75. [DOI: 10.1039/d0fo01102a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
45 Hou Y, Huang G, Li J, Yang Q, Huang S, Cai J. Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal. Journal of Analytical and Applied Pyrolysis 2019;143:104694. [DOI: 10.1016/j.jaap.2019.104694] [Cited by in Crossref: 30] [Cited by in F6Publishing: 50] [Article Influence: 10.0] [Reference Citation Analysis]
46 Yang L, Zhao Y, Huang J, Zhang H, Lin Q, Han L, Liu J, Wang J, Liu H. Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales. J Food Sci Technol 2020;57:152-62. [PMID: 31975718 DOI: 10.1007/s13197-019-04041-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
47 Huang YL, Hsieh IT. Physicochemical Properties and Intestinal Health Promoting Water-Insoluble Fiber Enriched Fraction Prepared from Blanched Vegetable Soybean Pod Hulls. Molecules 2019;24:E1796. [PMID: 31075889 DOI: 10.3390/molecules24091796] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
48 Yang B, Wu Q, Song X, Yang Q, Kan J. Physicochemical properties and bioactive function of Japanese grape ( Hovenia dulcis ) pomace insoluble dietary fibre modified by ball milling and complex enzyme treatment. Int J Food Sci Technol 2019;54:2363-73. [DOI: 10.1111/ijfs.14134] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
49 Singh J, Metrani R, Shivanagoudra SR, Jayaprakasha GK, Patil BS. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds. J Agric Food Chem 2019;67:9124-38. [PMID: 30969768 DOI: 10.1021/acs.jafc.8b07306] [Cited by in Crossref: 37] [Cited by in F6Publishing: 53] [Article Influence: 12.3] [Reference Citation Analysis]
50 Huang Y, Ma Y, Tsai Y, Chang SK. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. International Journal of Biological Macromolecules 2019;124:796-801. [DOI: 10.1016/j.ijbiomac.2018.11.249] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
51 Hu H, Zhao Q. Optimization extraction and functional properties of soluble dietary fiber from pineapple pomace obtained by shear homogenization-assisted extraction. RSC Adv 2018;8:41117-30. [DOI: 10.1039/c8ra06928j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]