BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: El Fawal GF, Abu-serie MM, Hassan MA, Elnouby MS. Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation. International Journal of Biological Macromolecules 2018;111:649-59. [DOI: 10.1016/j.ijbiomac.2018.01.040] [Cited by in Crossref: 93] [Cited by in F6Publishing: 78] [Article Influence: 18.6] [Reference Citation Analysis]
Number Citing Articles
1 Yin X, Fan T, Zheng N, Yang J, Yan L, He S, Ai F, Hu J. Palladium nanoparticle based smart hydrogels for NIR light-triggered photothermal/photodynamic therapy and drug release with wound healing capability. Nanoscale Adv 2023;5:1729-39. [PMID: 36926581 DOI: 10.1039/d2na00897a] [Reference Citation Analysis]
2 Huang W, Hung C, Chiang P, Lee H, Lin I, Lai P, Chan Y, Feng S. Physicochemical Characterization, Biocompatibility, and Antibacterial Properties of CMC/PVA/Calendula officinalis Films for Biomedical Applications. Polymers 2023;15:1454. [DOI: 10.3390/polym15061454] [Reference Citation Analysis]
3 Müller WE, Schepler H, Neufurth M, Wang S, Ferrucci V, Zollo M, Tan R, Schröder HC, Wang X. The physiological polyphosphate as a healing biomaterial for chronic wounds: Crucial roles of its antibacterial and unique metabolic energy supplying properties. Journal of Materials Science & Technology 2023;135:170-185. [DOI: 10.1016/j.jmst.2022.07.018] [Reference Citation Analysis]
4 Ningrum DR, Hanif W, Mardhian DF, Asri LATW. In Vitro Biocompatibility of Hydrogel Polyvinyl Alcohol/Moringa oleifera Leaf Extract/Graphene Oxide for Wound Dressing. Polymers (Basel) 2023;15. [PMID: 36679348 DOI: 10.3390/polym15020468] [Reference Citation Analysis]
5 Chen X, Zhang D, Luan H, Yang C, Yan W, Liu W. Flexible Pressure Sensors Based on Molybdenum Disulfide/Hydroxyethyl Cellulose/Polyurethane Sponge for Motion Detection and Speech Recognition Using Machine Learning. ACS Appl Mater Interfaces 2023;15:2043-53. [PMID: 36571453 DOI: 10.1021/acsami.2c16730] [Reference Citation Analysis]
6 Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023;12. [PMID: 36673441 DOI: 10.3390/foods12020350] [Reference Citation Analysis]
7 Li X, Lu P, Jia H, Li G, Zhu B, Wang X, Wu F. Emerging materials for hemostasis. Coordination Chemistry Reviews 2023;475:214823. [DOI: 10.1016/j.ccr.2022.214823] [Reference Citation Analysis]
8 Pal D, Saha S. Role of plant polysaccharides in pharmaceutical hydrogels. Plant Polysaccharides as Pharmaceutical Excipients 2023. [DOI: 10.1016/b978-0-323-90780-4.00014-0] [Reference Citation Analysis]
9 Tohamy HS, El-Sakhawy M, El-Masry HM, Saleh IA, AbdelMohsen MM. Preparation of hydroxyethyl cellulose/ mangiferin edible films and their antimicrobial properties. BMC Chem 2022;16:113. [PMID: 36503575 DOI: 10.1186/s13065-022-00907-w] [Reference Citation Analysis]
10 Mao G, Wang Z, Tian S, Li H, Yang W. A novel chitosan-hyaluronic acid-pullulan composite film wound dressing for effectively inhibiting bacteria and accelerating wound healing. Materials Today Communications 2022;33:104801. [DOI: 10.1016/j.mtcomm.2022.104801] [Reference Citation Analysis]
11 El-samad LM, Hassan MA, Basha AA, El-ashram S, Radwan EH, Abdul Aziz KK, Tamer TM, Augustyniak M, El Wakil A. Carboxymethyl cellulose/sericin-based hydrogels with intrinsic antibacterial, antioxidant, and anti-inflammatory properties promote re-epithelization of diabetic wounds in rats. International Journal of Pharmaceutics 2022;629:122328. [DOI: 10.1016/j.ijpharm.2022.122328] [Reference Citation Analysis]
12 Han Y, Jin Z, Zhang D, Hu B, Li Z, Jing Y, Sun S. Application of polymers in promoting transdermal absorption. Materials Today Chemistry 2022;26:101204. [DOI: 10.1016/j.mtchem.2022.101204] [Reference Citation Analysis]
13 de Freitas ADSM, Rodrigues JS, Botaro VR, Lemes AP, Cruz SA, Waldman WR. Formation of craze-like pattern in polypropylene UV-induced surface cracking. J Polym Res 2022;29:506. [DOI: 10.1007/s10965-022-03357-z] [Reference Citation Analysis]
14 Tamer TM, Sabet MM, Alhalili ZAH, Ismail AM, Mohy-Eldin MS, Hassan MA. Influence of Cedar Essential Oil on Physical and Biological Properties of Hemostatic, Antibacterial, and Antioxidant Polyvinyl Alcohol/Cedar Oil/Kaolin Composite Hydrogels. Pharmaceutics 2022;14. [PMID: 36559143 DOI: 10.3390/pharmaceutics14122649] [Reference Citation Analysis]
15 Romão S, Bettencourt A, Ribeiro IAC. Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers (Basel) 2022;14. [PMID: 36433095 DOI: 10.3390/polym14224968] [Reference Citation Analysis]
16 Deng J, Song Q, Liu S, Pei W, Wang P, Zheng L, Huang C, Ma M, Jiang Q, Zhang K. Advanced applications of cellulose-based composites in fighting bone diseases. Composites Part B: Engineering 2022;245:110221. [DOI: 10.1016/j.compositesb.2022.110221] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Zawani M, Maarof M, Tabata Y, Motta A, Fauzi MB. Quercetin-Embedded Gelastin Injectable Hydrogel as Provisional Biotemplate for Future Cutaneous Application: Optimization and In Vitro Evaluation. Gels 2022;8. [PMID: 36286124 DOI: 10.3390/gels8100623] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Luo C, Shao Y, Yu H, Ma H, Zhang Y, Yin B, Yang M. Improving the Output Performance of Bacterial Cellulose-Based Triboelectric Nanogenerators by Modulating the Surface Potential in a Simple Method. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c03189] [Reference Citation Analysis]
19 Nasution H, Harahap H, Dalimunthe NF, Ginting MHS, Jaafar M, Tan OOH, Aruan HK, Herfananda AL. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels 2022;8:568. [DOI: 10.3390/gels8090568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Xiong H, Peng H, Ye X, Kong Y, Wang N, Yang F, Meni B, Lei Z. High salt tolerance hydrogel prepared of hydroxyethyl starch and its ability to increase soil water holding capacity and decrease water evaporation. Soil and Tillage Research 2022;222:105427. [DOI: 10.1016/j.still.2022.105427] [Reference Citation Analysis]
21 Luneva O, Olekhnovich R, Uspenskaya M. Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers 2022;14:3135. [DOI: 10.3390/polym14153135] [Reference Citation Analysis]
22 Ciecholewska-Juśko D, Junka A, Fijałkowski K. The cross-linked bacterial cellulose impregnated with octenidine dihydrochloride-based antiseptic as an antibacterial dressing material for highly-exuding, infected wounds. Microbiol Res 2022;263:127125. [PMID: 35878492 DOI: 10.1016/j.micres.2022.127125] [Reference Citation Analysis]
23 Mendes AI, Rebelo R, Aroso I, Correlo VM, Fraga AG, Pedrosa J, Marques AP. Development of an antibiotics delivery system for topical treatment of the neglected tropical disease Buruli ulcer. Int J Pharm 2022;:121954. [PMID: 35760261 DOI: 10.1016/j.ijpharm.2022.121954] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Gelaw TB, Sarojini BK, Kodoth AK. Chitosan/Hydroxyethyl Cellulose Gel Immobilized Polyaniline/CuO/ZnO Adsorptive-Photocatalytic Hybrid Nanocomposite for Congo Red Removal. J Polym Environ. [DOI: 10.1007/s10924-022-02492-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Hsu CY, Lin SC, Wu YH, Hu CY, Chen YT, Chen YC. The Antimicrobial Effects of Bacterial Cellulose Produced by Komagataeibacter intermedius in Promoting Wound Healing in Diabetic Mice. Int J Mol Sci 2022;23:5456. [PMID: 35628265 DOI: 10.3390/ijms23105456] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Liu J, Shen H. Clinical efficacy of chitosan-based hydrocolloid dressing in the treatment of chronic refractory wounds. Int Wound J 2022. [PMID: 35524492 DOI: 10.1111/iwj.13801] [Reference Citation Analysis]
27 Dardeer HM, Mahgoub MY, Abouzeid RE, Owda ME, M.ahmed F. Novel pseudopolyrotaxane composite based on biopolymers: Synthesis, characterization and application in water treatment. Environmental Nanotechnology, Monitoring & Management 2022;17:100639. [DOI: 10.1016/j.enmm.2021.100639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Gupta DN, Rani R, Kokane AD, Ghosh DK, Tomar S, Sharma AK. Characterization of a cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis and its potential role in protection from oxidative damage and wound healing. Int J Biol Macromol 2022:S0141-8130(22)00793-0. [PMID: 35452700 DOI: 10.1016/j.ijbiomac.2022.04.086] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Andrade del Olmo J, Pérez-álvarez L, Sáez-martínez V, Benito-cid S, Ruiz-rubio L, Pérez-gonzález R, Vilas-vilela JL, Alonso JM. Wound healing and antibacterial chitosan-genipin hydrogels with controlled drug delivery for synergistic anti-inflammatory activity. International Journal of Biological Macromolecules 2022;203:679-94. [DOI: 10.1016/j.ijbiomac.2022.01.193] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
30 Fatimi A, Okoro OV, Podstawczyk D, Siminska-stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022;8:179. [DOI: 10.3390/gels8030179] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 30.0] [Reference Citation Analysis]
31 Zou S, Fan S, Oliveira AL, Yao X, Zhang Y, Shao H. 3D Printed Gelatin Scaffold with Improved Shape Fidelity and Cytocompatibility by Using Antheraea pernyi Silk Fibroin Nanofibers. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00135-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
32 Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers (Basel) 2022;14:769. [PMID: 35215680 DOI: 10.3390/polym14040769] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
33 Kim JS, Yu H, Woo MR, Kim DW, Kim JO, Ku SK, Jin SG, Choi H. Influence of hydrophilic polymers on mechanical property and wound recovery of hybrid bilayer wound dressing system for delivering thermally unstable probiotic. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112696] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Ghaedrahmati H, Frounchi M, Dadbin S. Piezoelectric behavior of Gamma-radiated nanocomposite hydrogel based on PVP-PEG-BaTiO3. Materials Science and Engineering: B 2022;276:115535. [DOI: 10.1016/j.mseb.2021.115535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
35 Ghosh T, Deveswaran R, Murahari M, Bharath S. Development and Characterization of Copper Cross-Linked Freeze-Dried Bioscaffolds for Potential Wound Healing Activity. J Pharm Innov. [DOI: 10.1007/s12247-021-09613-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Beyler Çiğil A, Şen F, Birtane H, Kahraman MV. Covalently bonded nanosilver-hydroxyethyl cellulose/polyacrylic acid/sorbitol hybrid matrix: thermal, morphological and antibacterial properties. Polym Bull . [DOI: 10.1007/s00289-022-04089-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Azougagh O, Essayeh S, Achalhi N, El Idrissi A, Amhamdi H, Loutou M, El Ouardi Y, Salhi A, Abou-Salama M, El Barkany S. New benzyltriethylammonium/urea deep eutectic solvent: Quantum calculation and application to hyrdoxylethylcellulose modification. Carbohydr Polym 2022;276:118737. [PMID: 34823773 DOI: 10.1016/j.carbpol.2021.118737] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Heydari S, Asefnejad A, Hassanzadeh Nemati N, Goodarzi V, Vaziri A. Fabrication of multicomponent cellulose/polypyrrole composed with zinc oxide nanoparticles for improving mechanical and biological properties. Reactive and Functional Polymers 2022;170:105126. [DOI: 10.1016/j.reactfunctpolym.2021.105126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Ho HN, Le HH, Le TG, Duong THA, Ngo VQT, Dang CT, Nguyen VM, Tran TH, Nguyen CN. Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery. Int J Biol Macromol 2022;194:1010-8. [PMID: 34843817 DOI: 10.1016/j.ijbiomac.2021.11.161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
40 Firmanda A, Fahma F, Syamsu K, Cabral J, Pletzer D, Gustiananda M. Cellulose composites containing active constituents of coffee and tea: a prospective novel wound dressing. Mater Adv 2022. [DOI: 10.1039/d2ma00642a] [Reference Citation Analysis]
41 Ullah A, Sarwar MN, Wang F, Kharaghani D, Sun L, Zhu C, Yoshiko Y, Mayakrishnan G, Lee JS, Kim IS. In vitro biocompatibility, antibacterial activity, and release behavior of halloysite nanotubes loaded with diclofenac sodium salt incorporated in electrospun soy protein isolate/hydroxyethyl cellulose nanofibers. Current Research in Biotechnology 2022;4:445-58. [DOI: 10.1016/j.crbiot.2022.09.008] [Reference Citation Analysis]
42 Ghosh T, Deveswaran R, Bharath S. Copper crosslinked carboxymethyl chitosan–gelatin scaffolds: A potential antibacterial and cytocompatible material for biomedical applications. Materials Today: Proceedings 2022;59:31-38. [DOI: 10.1016/j.matpr.2021.10.140] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Thakur A, Kaur H. Synthetic chemistry of cellulose hydrogels-A review. Materials Today: Proceedings 2022;48:1431-8. [DOI: 10.1016/j.matpr.2021.09.201] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Özcan Bülbül E, Okur ME, Üstündağ Okur N, Siafaka PI. Traditional and advanced wound dressings: physical characterization and desirable properties for wound healing. Natural Polymers in Wound Healing and Repair 2022. [DOI: 10.1016/b978-0-323-90514-5.00020-1] [Reference Citation Analysis]
45 Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S. Biomedical applications of hydrogels in drug delivery system: An update. Journal of Drug Delivery Science and Technology 2021;66:102914. [DOI: 10.1016/j.jddst.2021.102914] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
46 Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, Ghica MV. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals (Basel) 2021;14:1215. [PMID: 34959615 DOI: 10.3390/ph14121215] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
47 Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals (Basel) 2021;14:1201. [PMID: 34832983 DOI: 10.3390/ph14111201] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
48 Huang J, E S, Si L, Li J, Tian Z, Lu Z. Composite films of hydroxyethyl cellulose and hydroxyapatite nanowires with high mechanical strength and electrical insulation property. Journal of Wood Chemistry and Technology 2022;42:15-25. [DOI: 10.1080/02773813.2021.1998128] [Reference Citation Analysis]
49 Bozova N, Petrov PD. Highly Elastic Super-Macroporous Cryogels Fabricated by Thermally Induced Crosslinking of 2-Hydroxyethylcellulose with Citric Acid in Solid State. Molecules 2021;26:6370. [PMID: 34770779 DOI: 10.3390/molecules26216370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Momin M, Mishra V, Gharat S, Omri A. Recent advancements in cellulose-based biomaterials for management of infected wounds. Expert Opin Drug Deliv 2021;18:1741-60. [PMID: 34605347 DOI: 10.1080/17425247.2021.1989407] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Guo Y, Zhao C, Yan C, Cui L. Construction of cellulose/carboxymethyl chitosan hydrogels for potential wound dressing application. Cellulose 2021;28:10013-10023. [DOI: 10.1007/s10570-021-04149-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Youssef JR, Boraie NA, Ibrahim HF, Ismail FA, El-Moslemany RM. Glibenclamide Nanocrystal-Loaded Bioactive Polymeric Scaffolds for Skin Regeneration: In Vitro Characterization and Preclinical Evaluation. Pharmaceutics 2021;13:1469. [PMID: 34575545 DOI: 10.3390/pharmaceutics13091469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Liang Y, He J, Guo B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021. [PMID: 34374515 DOI: 10.1021/acsnano.1c04206] [Cited by in Crossref: 268] [Cited by in F6Publishing: 319] [Article Influence: 134.0] [Reference Citation Analysis]
54 Liu C, Jin T, Liu W, Hao W, Yan L, Zheng L. Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. LWT 2021;148:111770. [DOI: 10.1016/j.lwt.2021.111770] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
55 Chen Z, Zhang X, Liang J, Ji Y, Zhou Y, Fang H. Preparation of Silk Fibroin/Carboxymethyl Chitosan Hydrogel under Low Voltage as a Wound Dressing. Int J Mol Sci 2021;22:7610. [PMID: 34299229 DOI: 10.3390/ijms22147610] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
56 Ay Şenyiğit Z, Coşkunmeriç N, Çağlar EŞ, Öztürk İ, Atlıhan Gündoğdu E, Siafaka PI, Üstündağ Okur N. Chitosan-bovine serum albumin-Carbopol 940 nanogels for mupirocin dermal delivery: ex-vivo permeation and evaluation of cellular binding capacity via radiolabeling. Pharm Dev Technol 2021;26:852-66. [PMID: 34193003 DOI: 10.1080/10837450.2021.1948570] [Reference Citation Analysis]
57 Seiler ERD, Koyama K, Iijima T, Saito T, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M. Simple and Fast One-Pot Cellulose Gel Preparation in Aqueous Pyrrolidinium Hydroxide Solution-Cellulose Solvent and Antibacterial Agent. Polymers (Basel) 2021;13:1942. [PMID: 34208065 DOI: 10.3390/polym13121942] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Zawani M, Fauzi MB. Injectable Hydrogels for Chronic Skin Wound Management: A Concise Review. Biomedicines 2021;9:527. [PMID: 34068490 DOI: 10.3390/biomedicines9050527] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
59 Tanmoy G, Deveswaran R, Apurba S, Kavana K, Monisha R, Bharath S. In-vitro Investigation of Wound Healing Potential of Musa acuminata Leaf Extract. Analytical Chemistry Letters 2021;11:437-449. [DOI: 10.1080/22297928.2021.1892521] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Mariia K, Arif M, Shi J, Song F, Chi Z, Liu C. Novel chitosan-ulvan hydrogel reinforcement by cellulose nanocrystals with epidermal growth factor for enhanced wound healing: In vitro and in vivo analysis. Int J Biol Macromol 2021;183:435-46. [PMID: 33932420 DOI: 10.1016/j.ijbiomac.2021.04.156] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
61 Zhang M, Chen G, Lei M, Lei J, Li D, Zheng H. A pH-sensitive oxidized-dextran based double drug-loaded hydrogel with high antibacterial properties. Int J Biol Macromol 2021;182:385-93. [PMID: 33798586 DOI: 10.1016/j.ijbiomac.2021.03.169] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
62 Huang J, Lu Z, Li J, Ning D, Jin Z, Ma Q, Hua L, E S, Zhang M. Improved mechanical and ultraviolet shielding performances of hydroxyethyl cellulose film by using aramid nanofibers as additives. Carbohydr Polym 2021;255:117330. [PMID: 33436173 DOI: 10.1016/j.carbpol.2020.117330] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
63 Jin T, Yan L, Liu W, Liu S, Liu C, Zheng L. Preparation and physicochemical/antimicrobial characteristics of asparagus cellulose films containing quercetin. Food Science and Human Wellness 2021;10:251-7. [DOI: 10.1016/j.fshw.2021.02.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
64 Gospodinova A, Nankov V, Tomov S, Redzheb M, Petrov PD. Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydr Polym 2021;260:117793. [PMID: 33712141 DOI: 10.1016/j.carbpol.2021.117793] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
65 Zhang MX, Zhao WY, Fang QQ, Wang XF, Chen CY, Shi BH, Zheng B, Wang SJ, Tan WQ, Wu LH. Effects of chitosan-collagen dressing on wound healing in vitro and in vivo assays. J Appl Biomater Funct Mater 2021;19:2280800021989698. [PMID: 33560909 DOI: 10.1177/2280800021989698] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Tamer TM, Sabet MM, Omer AM, Abbas E, Eid AI, Mohy-Eldin MS, Hassan MA. Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin-streptomycin for wound dressing applications. Sci Rep 2021;11:3428. [PMID: 33564036 DOI: 10.1038/s41598-021-82963-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 20.5] [Reference Citation Analysis]
67 Niimi Y, Pérez-Bello D, Ihara K, Fukuda S, Jacob S, Andersen CR, Baljinnyam T, Kim J, Alharbi S, Prough DS, Enkhbaatar P. Omega-7 oil increases telomerase activity and accelerates healing of grafted burn and donor site wounds. Sci Rep 2021;11:975. [PMID: 33441597 DOI: 10.1038/s41598-020-79597-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
68 Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. Mater Sci Eng C Mater Biol Appl 2021;121:111843. [PMID: 33579480 DOI: 10.1016/j.msec.2020.111843] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 12.5] [Reference Citation Analysis]
69 Alibolandi M, Bagheri E, Mohammadi M, Sameiyan E, Ramezani M. Biopolymer-Based Hydrogel Wound Dressing. Modeling and Control of Drug Delivery Systems 2021. [DOI: 10.1016/b978-0-12-821185-4.00019-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Ajith G, Goyal AS, Rodrigues FC, Thakur G. Natural polysaccharides for wound healing. Food, Medical, and Environmental Applications of Polysaccharides 2021. [DOI: 10.1016/b978-0-12-819239-9.00019-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Osmani RAM, Singh E, Jadhav K, Jadhav S, Banerjee R. Biopolymers and biocomposites: Nature’s tools for wound healing and tissue engineering. Applications of Advanced Green Materials 2021. [DOI: 10.1016/b978-0-12-820484-9.00023-4] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
72 Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: a review. Journal of Materials Research and Technology 2021;10:935-52. [DOI: 10.1016/j.jmrt.2020.12.012] [Cited by in Crossref: 74] [Cited by in F6Publishing: 85] [Article Influence: 37.0] [Reference Citation Analysis]
73 Shafique M, Sohail M, Minhas MU, Khaliq T, Kousar M, Khan S, Hussain Z, Mahmood A, Abbasi M, Aziz HC, Shah SA. Bio-functional hydrogel membranes loaded with chitosan nanoparticles for accelerated wound healing. Int J Biol Macromol 2021;170:207-21. [PMID: 33359612 DOI: 10.1016/j.ijbiomac.2020.12.157] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
74 Lu Z, Huang J, E S, Li J, Si L, Yao C, Jia F, Zhang M. All cellulose composites prepared by hydroxyethyl cellulose and cellulose nanocrystals through the crosslink of polyisocyanate. Carbohydrate Polymers 2020;250:116919. [DOI: 10.1016/j.carbpol.2020.116919] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
75 Kaparekar PS, Pathmanapan S, Anandasadagopan SK. Polymeric scaffold of Gallic acid loaded chitosan nanoparticles infused with collagen-fibrin for wound dressing application. International Journal of Biological Macromolecules 2020;165:930-47. [DOI: 10.1016/j.ijbiomac.2020.09.212] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
76 Hassan MA, Tamer TM, Valachová K, Omer AM, El-Shafeey M, Mohy Eldin MS, Šoltés L. Antioxidant and antibacterial polyelectrolyte wound dressing based on chitosan/hyaluronan/phosphatidylcholine dihydroquercetin. Int J Biol Macromol 2021;166:18-31. [PMID: 33220372 DOI: 10.1016/j.ijbiomac.2020.11.119] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 17.7] [Reference Citation Analysis]
77 Mallakpour S, Ramezanzade V. Green fabrication of chitosan/tragacanth gum bionanocomposite films having TiO2@Ag hybrid for bioactivity and antibacterial applications. International Journal of Biological Macromolecules 2020;162:512-22. [DOI: 10.1016/j.ijbiomac.2020.06.163] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
78 Eivazzadeh-keihan R, Khalili F, Aliabadi HAM, Maleki A, Madanchi H, Ziabari EZ, Bani MS. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. International Journal of Biological Macromolecules 2020;162:1959-71. [DOI: 10.1016/j.ijbiomac.2020.08.090] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 13.0] [Reference Citation Analysis]
79 Chu M, Feng N, An H, You G, Mo C, Zhong H, Pan L, Hu D. Design and validation of antibacterial and pH response of cationic guar gum film by combining hydroxyethyl cellulose and red cabbage pigment. International Journal of Biological Macromolecules 2020;162:1311-22. [DOI: 10.1016/j.ijbiomac.2020.06.198] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
80 Krishnan S, Chinnadurai GS, Ravishankar K, Raghavachari D, Perumal P. Statistical augmentation of polyhydroxybutyrate production by Isoptericola variabilis: Characterization, moulding, in vitro cytocompatibility and biodegradability evaluation. Int J Biol Macromol 2021;166:80-97. [PMID: 33096176 DOI: 10.1016/j.ijbiomac.2020.10.089] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
81 Ciecholewska-Juśko D, Żywicka A, Junka A, Drozd R, Sobolewski P, Migdał P, Kowalska U, Toporkiewicz M, Fijałkowski K. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydr Polym 2021;253:117247. [PMID: 33279002 DOI: 10.1016/j.carbpol.2020.117247] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
82 Altaf F, Niazi MBK, Jahan Z, Ahmad T, Akram MA, safdar A, Butt MS, Noor T, Sher F. Synthesis and Characterization of PVA/Starch Hydrogel Membranes Incorporating Essential Oils Aimed to be Used in Wound Dressing Applications. J Polym Environ 2021;29:156-74. [DOI: 10.1007/s10924-020-01866-w] [Cited by in Crossref: 52] [Cited by in F6Publishing: 36] [Article Influence: 17.3] [Reference Citation Analysis]
83 Ko E, Kim H. Preparation of chitosan aerogel crosslinked in chemical and ionical ways by non-acid condition for wound dressing. Int J Biol Macromol 2020;164:2177-85. [PMID: 32763391 DOI: 10.1016/j.ijbiomac.2020.08.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
84 Zagórska-Dziok M, Sobczak M. Hydrogel-Based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics 2020;12:E396. [PMID: 32357389 DOI: 10.3390/pharmaceutics12050396] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
85 Kosimaningrum WE, Barleany DR, Sako VN, Ristiyanti R. Preparation of Gelatin-Chitosan-Honey-Based Hydrogel for Potential Active Material of Wound Care Dressing Application. MSF 2020;988:162-168. [DOI: 10.4028/www.scientific.net/msf.988.162] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
86 El Hosary R, El-mancy SM, El Deeb KS, Eid HH, El Tantawy ME, Shams MM, Samir R, Assar NH, Sleem AA. Efficient wound healing composite hydrogel using Egyptian Avena sativa L. polysaccharide containing β-glucan. International Journal of Biological Macromolecules 2020;149:1331-8. [DOI: 10.1016/j.ijbiomac.2019.11.046] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
87 El Fawal G, Hong H, Song X, Wu J, Sun M, Zhang L, He C, Mo X, Wang H. Polyvinyl Alcohol/Hydroxyethylcellulose Containing Ethosomes as a Scaffold for Transdermal Drug Delivery Applications. Appl Biochem Biotechnol 2020;191:1624-37. [PMID: 32198603 DOI: 10.1007/s12010-020-03282-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
88 Ciecholewska-juśko D, Żywicka A, Junka A, Drozd R, Sobolewski P, Migdał P, Kowalska U, Toporkiewicz M, Fijałkowski K. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings.. [DOI: 10.1101/2020.03.04.975003] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
89 El Fawal G, Hong H, Song X, Wu J, Sun M, He C, Mo X, Jiang Y, Wang H. Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packaging and Shelf Life 2020;23:100462. [DOI: 10.1016/j.fpsl.2020.100462] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
90 Kapanya A, Somsunan R, Molloy R, Jiranusornkul S, Leewattanapasuk W, Jongpaiboonkit L, Kong Y. Synthesis of polymeric hydrogels incorporating chlorhexidine gluconate as antibacterial wound dressings. Journal of Biomaterials Science, Polymer Edition 2020;31:895-909. [DOI: 10.1080/09205063.2020.1725862] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
91 Qureshi D, Nayak SK, Anis A, Ray SS, Kim D, Hanh Nguyen TT, Pal K. Introduction of biopolymers. Biopolymer-Based Formulations 2020. [DOI: 10.1016/b978-0-12-816897-4.00001-1] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
92 Bao D, Wen Z, Shi J, Xie L, Jiang H, Jiang J, Yang Y, Liao W, Sun X. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J Mater Chem A 2020;8:13787-94. [DOI: 10.1039/d0ta03215h] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 23.0] [Reference Citation Analysis]
93 Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019;23:20. [PMID: 31832232 DOI: 10.1186/s40824-019-0166-x] [Cited by in Crossref: 296] [Cited by in F6Publishing: 315] [Article Influence: 74.0] [Reference Citation Analysis]
94 Ahmed A, Niazi MBK, Jahan Z, Samin G, Pervaiz E, Hussain A, Mehran MT. Enhancing the Thermal, Mechanical and Swelling Properties of PVA/Starch Nanocomposite Membranes Incorporating g-C3N4. J Polym Environ 2020;28:100-15. [DOI: 10.1007/s10924-019-01592-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
95 Wang Y, Shi L, Wu H, Li Q, Hu W, Zhang Z, Huang L, Zhang J, Chen D, Deng S, Tan S, Jiang Z. Graphene Oxide-IPDI-Ag/ZnO@Hydroxypropyl Cellulose Nanocomposite Films for Biological Wound-Dressing Applications. ACS Omega 2019;4:15373-81. [PMID: 31572836 DOI: 10.1021/acsomega.9b01291] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
96 Yang Y, Mei X, Hu Y, Su L, Bian J, Li M, Peng F, Sun R. Fabrication of antimicrobial composite films based on xylan from pulping process for food packaging. International Journal of Biological Macromolecules 2019;134:122-30. [DOI: 10.1016/j.ijbiomac.2019.05.021] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
97 Ye S, Jiang L, Su C, Zhu Z, Wen Y, Shao W. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int J Biol Macromol 2019;133:148-55. [PMID: 30991065 DOI: 10.1016/j.ijbiomac.2019.04.095] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 15.0] [Reference Citation Analysis]
98 Bayindir Bilgic M, Lacin NT, Berber H, Mansuroglu B. In vitro evaluation of alpha-tocopherol loaded carboxymethylcellulose chitosan copolymers as wound dressing materials. Materials Technology 2019;34:386-93. [DOI: 10.1080/10667857.2019.1573944] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
99 Ismael Raafat A, El-hag Ali A. A novel Lawsonia inermis (Henna)/(hydroxyethylcellulose/polyvinylpyrrolidone) wound dressing hydrogel: radiation synthesis, characterization and biological evaluation. Polym Bull 2019;76:4069-86. [DOI: 10.1007/s00289-018-2587-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
100 Bian H, Jiao L, Wang R, Wang X, Zhu W, Dai H. Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel. European Polymer Journal 2018;107:267-74. [DOI: 10.1016/j.eurpolymj.2018.08.028] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 9.4] [Reference Citation Analysis]
101 Meftahi A, Khajavi R, Rashidi A, Rahimi MK, Bahador A. Preventing the collapse of 3D bacterial cellulose network via citric acid. J Nanostruct Chem 2018;8:311-20. [DOI: 10.1007/s40097-018-0275-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
102 Sahana TG, Rekha PD. Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep 2018;45:2857-67. [PMID: 30094529 DOI: 10.1007/s11033-018-4296-3] [Cited by in Crossref: 126] [Cited by in F6Publishing: 97] [Article Influence: 25.2] [Reference Citation Analysis]
103 Hassan MA, Omer AM, Abbas E, Baset WMA, Tamer TM. Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci Rep 2018;8:11416. [PMID: 30061725 DOI: 10.1038/s41598-018-29650-w] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 18.6] [Reference Citation Analysis]
104 Hassan MA, Bakhiet EK, Hussein HR, Ali SG. Statistical optimization studies for polyhydroxybutyrate (PHB) production by novel Bacillus subtilis using agricultural and industrial wastes. Int J Environ Sci Technol 2019;16:3497-512. [DOI: 10.1007/s13762-018-1900-y] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
105 Kozlowska J, Stachowiak N, Sionkowska A. Collagen/Gelatin/Hydroxyethyl Cellulose Composites Containing Microspheres Based on Collagen and Gelatin: Design and Evaluation. Polymers (Basel) 2018;10:E456. [PMID: 30966491 DOI: 10.3390/polym10040456] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
106 Tamer TM, Valachová K, Hassan MA, Omer AM, El-Shafeey M, Mohy Eldin MS, Šoltés L. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: In vitro and in vivo evaluation studies. Mater Sci Eng C Mater Biol Appl 2018;90:227-35. [PMID: 29853086 DOI: 10.1016/j.msec.2018.04.053] [Cited by in Crossref: 73] [Cited by in F6Publishing: 67] [Article Influence: 14.6] [Reference Citation Analysis]