BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang Z, Yu GL, Zhu X, Peng TH, Lv YC. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis 2022;9:51-61. [PMID: 35005107 DOI: 10.1016/j.gendis.2021.01.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Xin Z, Zhang T, Lu Q, Yang Z, Chen Z. Progress of m6A Methylation in Lipid Metabolism in Humans and Animals. Agriculture 2022;12:1683. [DOI: 10.3390/agriculture12101683] [Reference Citation Analysis]
2 Liu S, Chen S, Tang C, Zhao Y, Cui W, Jia L, Wang L. The emerging therapeutic target of dynamic and reversible N6-methyladenosine modification during cancer development. Front Oncol 2022;12:970833. [DOI: 10.3389/fonc.2022.970833] [Reference Citation Analysis]
3 Zheng J, Wang F, Guo H, Cheng J, Du J, Kan J. Gut microbiota modulates differential lipid metabolism outcomes associated with FTO gene polymorphisms in response to personalized nutrition intervention. Front Nutr 2022;9. [DOI: 10.3389/fnut.2022.985723] [Reference Citation Analysis]
4 Wang Y, Wang Y, Gu J, Su T, Gu X, Feng Y. The role of RNA m6A methylation in lipid metabolism. Front Endocrinol 2022;13:866116. [DOI: 10.3389/fendo.2022.866116] [Reference Citation Analysis]
5 Zhang W, Zhang S, Dong C, Guo S, Jia W, Jiang Y, Wang C, Zhou M, Gong Y. A bibliometric analysis of RNA methylation in diabetes mellitus and its complications from 2002 to 2022. Front Endocrinol 2022;13:997034. [DOI: 10.3389/fendo.2022.997034] [Reference Citation Analysis]
6 Rong J, Jie Y, Zhao H. N6-methyladenosine writer KIAA1429 modulates the proliferation/migration of endothelial cells for atherosclerosis.. [DOI: 10.21203/rs.3.rs-1959422/v1] [Reference Citation Analysis]
7 Yuan B, Zhou J. N6-methyladenosine (m6A) reader IGF2BP1 facilitates clear-cell renal cell carcinoma aerobic glycolysis.. [DOI: 10.21203/rs.3.rs-1959363/v1] [Reference Citation Analysis]
8 Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022;10:929183. [DOI: 10.3389/fcell.2022.929183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Omanovic Kolaric T, Kizivat T, Mihaljevic V, Zjalic M, Bilic-Curcic I, Kuna L, Smolic R, Vcev A, Wu GY, Smolic M. Liraglutide Exerts Protective Effects by Downregulation of PPARγ, ACSL1 and SREBP-1c in Huh7 Cell Culture Models of Non-Alcoholic Steatosis and Drug-Induced Steatosis. Curr Issues Mol Biol 2022;44:3465-80. [PMID: 36005135 DOI: 10.3390/cimb44080239] [Reference Citation Analysis]
10 Hu N, Zou L, Wang C, Song G. RUNX1T1 function in cell fate. Stem Cell Res Ther 2022;13:369. [PMID: 35902872 DOI: 10.1186/s13287-022-03074-w] [Reference Citation Analysis]
11 Ma Y, Chen G, Yi J, Li Q, Tan Z, Fan W, Luo X, He Z, Si Z, Li J. IRX3 plays an important role in the pathogenesis of metabolic-associated fatty liver disease by regulating hepatic lipid metabolism. Front Endocrinol 2022;13:895593. [DOI: 10.3389/fendo.2022.895593] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhang C, Liu N. N6-methyladenosine (m6A) modification in gynecological malignancies. J Cell Physiol 2022. [PMID: 35802474 DOI: 10.1002/jcp.30828] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Sun J, Cheng B, Su Y, Li M, Ma S, Zhang Y, Zhang A, Cai S, Bao Q, Wang S, Zhu P. The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Front Genet 2022;13:869950. [PMID: 35518355 DOI: 10.3389/fgene.2022.869950] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Shan HJ, Gu WX, Duan G, Chen HL. Fat mass and obesity associated (FTO)-mediated N6-methyladenosine modification of Krüppel-like factor 3 (KLF3) promotes osteosarcoma progression. Bioengineered 2022;13:8038-50. [PMID: 35311620 DOI: 10.1080/21655979.2022.2051785] [Reference Citation Analysis]
15 Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021;10:1483. [PMID: 34573116 DOI: 10.3390/antiox10091483] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]