BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Badu-Boateng C, Naftalin RJ. Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med 2019;133:75-87. [PMID: 30268889 DOI: 10.1016/j.freeradbiomed.2018.09.041] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Fujii J, Osaki T, Bo T. Ascorbate Is a Primary Antioxidant in Mammals. Molecules 2022;27:6187. [DOI: 10.3390/molecules27196187] [Reference Citation Analysis]
2 Kumar I, Nayak R, Chaudhary LB, Pandey VN, Mishra SK, Singh NK, Srivastava A, Prasad S, Naik RM. Fabrication of α-Fe 2 O 3 Nanostructures: Synthesis, Characterization, and Their Promising Application in the Treatment of Carcinoma A549 Lung Cancer Cells. ACS Omega. [DOI: 10.1021/acsomega.2c02083] [Reference Citation Analysis]
3 Smith GL, Srivastava AK, Reutovich AA, Hunter NJ, Arosio P, Melman A, Bou-abdallah F. Iron Mobilization from Ferritin in Yeast Cell Lysate and Physiological Implications. IJMS 2022;23:6100. [DOI: 10.3390/ijms23116100] [Reference Citation Analysis]
4 Jiang H, Zhang X, Yang W, Li M, Wang G, Luo Q. Ferrostatin-1 Ameliorates Liver Dysfunction via Reducing Iron in Thioacetamide-induced Acute Liver Injury in Mice. Front Pharmacol 2022;13:869794. [DOI: 10.3389/fphar.2022.869794] [Reference Citation Analysis]
5 Meng F, Fleming BA, Jia X, Rousek AA, Mulvey MA, Ward DM. Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Adv 2022;6:1692-707. [PMID: 34982827 DOI: 10.1182/bloodadvances.2021005609] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Okazaki Y. The Role of Ferric Nitrilotriacetate in Renal Carcinogenesis and Cell Death: From Animal Models to Clinical Implications. Cancers (Basel) 2022;14:1495. [PMID: 35326646 DOI: 10.3390/cancers14061495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Fujii J, Homma T, Osaki T. Superoxide Radicals in the Execution of Cell Death. Antioxidants 2022;11:501. [DOI: 10.3390/antiox11030501] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
8 Selyutina OY, Kononova PA, Koshman VE, Fedenok LG, Polyakov NE. The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity. Antioxidants 2022;11:376. [DOI: 10.3390/antiox11020376] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Xuan Y, Yang Y, Xiang L, Zhang C, Rauf A. The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. Oxidative Medicine and Cellular Longevity 2022;2022:1-12. [DOI: 10.1155/2022/8498472] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
10 Alharthi MA, Luqman M, Shakeel N, Ahamed MI, Inamuddin. Gold nanoparticles decorated on reduced graphene oxide as a supporting material for enzymatic bioanode. J Nanostruct Chem. [DOI: 10.1007/s40097-021-00461-2] [Reference Citation Analysis]
11 Gąbka M, Dałek P, Przybyło M, Gackowski D, Oliński R, Langner M. The Membrane Electrical Potential and Intracellular pH as Factors Influencing Intracellular Ascorbate Concentration and Their Role in Cancer Treatment. Cells 2021;10:2964. [PMID: 34831187 DOI: 10.3390/cells10112964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Fujii J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J Clin Biochem Nutr 2021;69:1-15. [PMID: 34376908 DOI: 10.3164/jcbn.20-181] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Shakeel N, Ahamed MI, Inamuddin, Ahmed A, Kanchi S, Kashmery HA. Hydrothermally synthesized defective NiMoSe2 nanoplates decorated on the surface of functionalized SWCNTs doped polypyrrole scaffold for enzymatic biofuel cell applications. International Journal of Hydrogen Energy 2021;46:3240-50. [DOI: 10.1016/j.ijhydene.2020.04.144] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
14 Chobot V, Hadacek F, Bachmann G, Weckwerth W, Kubicova L. In Vitro Evaluation of Pro- and Antioxidant Effects of Flavonoid Tricetin in Comparison to Myricetin. Molecules 2020;25:E5850. [PMID: 33322312 DOI: 10.3390/molecules25245850] [Reference Citation Analysis]
15 Derry PJ, Vo ATT, Gnanansekaran A, Mitra J, Liopo AV, Hegde ML, Tsai AL, Tour JM, Kent TA. The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Front Cell Neurosci 2020;14:603043. [PMID: 33363457 DOI: 10.3389/fncel.2020.603043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Patra SG, Mizrahi A, Meyerstein D. The Role of Carbonate in Catalytic Oxidations. Acc Chem Res 2020;53:2189-200. [PMID: 32975405 DOI: 10.1021/acs.accounts.0c00344] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
17 Alu A, Han X, Ma X, Wu M, Wei Y, Wei X. The role of lysosome in regulated necrosis. Acta Pharm Sin B 2020;10:1880-903. [PMID: 33163342 DOI: 10.1016/j.apsb.2020.07.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
18 Zhang J, Chen X, Hong J, Tang A, Liu Y, Xie N, Nie G, Yan X, Liang M. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci China Life Sci 2021;64:352-62. [PMID: 32974854 DOI: 10.1007/s11427-020-1795-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
19 Kontoghiorghes GJ, Kolnagou A, Kontoghiorghe CN, Mourouzidis L, Timoshnikov VA, Polyakov NE. Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. Medicines (Basel) 2020;7:E45. [PMID: 32751493 DOI: 10.3390/medicines7080045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
20 Delesderrier E, Curioni C, Omena J, Macedo CR, Cople-Rodrigues C, Citelli M. Antioxidant nutrients and hemolysis in sickle cell disease. Clin Chim Acta 2020;510:381-90. [PMID: 32673671 DOI: 10.1016/j.cca.2020.07.020] [Reference Citation Analysis]
21 Kontoghiorghes GJ, Kontoghiorghe CN. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020;9:E1456. [PMID: 32545424 DOI: 10.3390/cells9061456] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
22 Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environmental Pollution 2019;254:112937. [DOI: 10.1016/j.envpol.2019.07.105] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
23 Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica et Biophysica Acta (BBA) - General Subjects 2019;1863:1398-409. [DOI: 10.1016/j.bbagen.2019.06.010] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 23.3] [Reference Citation Analysis]
24 Harigae H, Hino K, Toyokuni S. Iron as Soul of Life on Earth Revisited: From Chemical Reaction, Ferroptosis to Therapeutics. Free Radical Biology and Medicine 2019;133:1-2. [DOI: 10.1016/j.freeradbiomed.2019.01.042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
25 Koochana PK, Mohanty A, Subhadarshanee B, Satpati S, Naskar R, Dixit A, Behera RK. Phenothiazines and phenoxazines: as electron transfer mediators for ferritin iron release. Dalton Trans 2019;48:3314-26. [DOI: 10.1039/c8dt04383c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Bou-Abdallah F, Paliakkara JJ, Melman G, Melman A. Reductive Mobilization of Iron from Intact Ferritin: Mechanisms and Physiological Implication. Pharmaceuticals (Basel) 2018;11:E120. [PMID: 30400623 DOI: 10.3390/ph11040120] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]