1 |
Arnal M, Gallego M, Talens P, Mora L. Impact of thermal treatments and simulated gastrointestinal digestion on the α-amylase inhibitory activity of different legumes. Food Chemistry 2023. [DOI: 10.1016/j.foodchem.2023.135884] [Reference Citation Analysis]
|
2 |
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023;15. [PMID: 36904097 DOI: 10.3390/nu15051096] [Reference Citation Analysis]
|
3 |
C. Ogbu C, N. Okechukwu S. Agro-Industrial Waste Management: The Circular and Bioeconomic Perspective. Agricultural Waste - New Insights [Working Title] 2023. [DOI: 10.5772/intechopen.109181] [Reference Citation Analysis]
|
4 |
Rahmi A, Arcot J. In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods 2023;12. [PMID: 36766167 DOI: 10.3390/foods12030631] [Reference Citation Analysis]
|
5 |
Li Y, Fan Y, Liu J, Meng Z, Huang A, Xu F, Wang X. Identification, characterization and in vitro activity of hypoglycemic peptides in whey hydrolysates from rubing cheese by-product. Food Res Int 2023;164:112382. [PMID: 36737967 DOI: 10.1016/j.foodres.2022.112382] [Reference Citation Analysis]
|
6 |
Ribeiro JVV, Graziani D, Carvalho JHM, Mendonça MM, Naves LM, Oliveira HF, Campos HM, Fioravanti MCS, Pacheco LF, Ferreira PM, Pedrino GR, Ghedini PC, Fernandes KF, Batista KA, Xavier CH. A peptide fraction from hardened common beans (Phaseolus vulgaris) induces endothelium-dependent antihypertensive and renal effects in rats. Curr Res Food Sci 2023;6:100410. [PMID: 36545514 DOI: 10.1016/j.crfs.2022.100410] [Reference Citation Analysis]
|
7 |
Pedroni L, Perugino F, Galaverna G, Dall’asta C, Dellafiora L. An In Silico Framework to Mine Bioactive Peptides from Annotated Proteomes: A Case Study on Pancreatic Alpha Amylase Inhibitory Peptides from Algae and Cyanobacteria. Nutrients 2022;14:4680. [DOI: 10.3390/nu14214680] [Reference Citation Analysis]
|
8 |
Farias TC, de Souza TSP, Fai AEC, Koblitz MGB. Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022;14:4275. [DOI: 10.3390/nu14204275] [Reference Citation Analysis]
|
9 |
Alcazar‐valle M, Lugo‐cervantes E, Fonseca‐hernandez D, Mojica L. Common Beans Bioactive Components and Their Potential to Modulate Molecular Markers of Obesity and Type 2 Diabetes. Molecular Mechanisms of Functional Food 2022. [DOI: 10.1002/9781119804055.ch4] [Reference Citation Analysis]
|
10 |
Feng Y, Zhu J, Wang Q, Cao H, He F, Guan Y, Li D, Yan J, Yang J, Xia Y, Dong M, Hu F, Cao M, Wang J, Ding X, Feng Y, Zou H, Han Y, Sun S, Zhang J, Tang A, Jiang M, Deng Y, Gao J, Jia Y, Zhao W, Zhang F. White common bean extract remodels the gut microbiota and ameliorates type 2 diabetes and its complications: A randomized double-blinded placebo-controlled trial. Front Endocrinol 2022;13:999715. [DOI: 10.3389/fendo.2022.999715] [Reference Citation Analysis]
|
11 |
Wei R, Lin L, Li T, Li C, Chen B, Shen Y. Separation, identification, and design of α-glucosidase inhibitory peptides based on the molecular mechanism from Paeonia ostii 'Feng Dan' seed protein. J Food Sci 2022. [PMID: 36205483 DOI: 10.1111/1750-3841.16340] [Reference Citation Analysis]
|
12 |
Gharibzahedi SMT, Smith B, Altintas Z. Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: a review. Crit Rev Food Sci Nutr 2022;:1-31. [PMID: 36200775 DOI: 10.1080/10408398.2022.2124399] [Reference Citation Analysis]
|
13 |
He L, Wang X, Wang Y, Luo J, Zhao Y, Han G, Han L, Yu Q. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded cowhide collagen. Food Chemistry 2022. [DOI: 10.1016/j.foodchem.2022.134793] [Reference Citation Analysis]
|
14 |
Du X, Huang X, Wang L, Mo L, Jing H, Bai X, Wang H. Nanosized niosomes as effective delivery device to improve the stability and bioaccessibility of goat milk whey protein peptide. Food Research International 2022. [DOI: 10.1016/j.foodres.2022.111729] [Reference Citation Analysis]
|
15 |
Aydemir LY, Diblan S, Aktas H, Cakitli G. Changes in bioactive properties of dry bean extracts during enzymatic hydrolysis and in vitro digestion steps. Food Measure. [DOI: 10.1007/s11694-022-01484-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Aderinola TA, Akinola IA, Babalola OE, Adebisi AO, Akinyemi OJ, Adenuga OE. Supplementation of Biscuit with Moringa Oleifera Seed Protein Enhanced Its in-vitro Antioxidative, Antidiabetic and anti-inflammatory Properties. Journal of Culinary Science & Technology. [DOI: 10.1080/15428052.2022.2073933] [Reference Citation Analysis]
|
17 |
Wang X, Fan Y, Xu F, Xie J, Gao X, Li L, Tian Y, Sheng J. Characterization of the structure, stability, and activity of hypoglycemic peptides from Moringa oleifera seed protein hydrolysates. Food Funct 2022;13:3481-94. [PMID: 35246675 DOI: 10.1039/d1fo03413h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
18 |
Paula LC, Lemes AC, Valencia-mejía E, Moreira BR, Oliveira TS, Campos IT, Neri HF, Brondani C, Ghedini PC, Batista KA, Fernandes KF. Effect of extrusion and autoclaving on the biological potential of proteins and naturally-occurring peptides from common beans: Antioxidant and vasorelaxant properties. Food Chemistry: X 2022;13:100259. [DOI: 10.1016/j.fochx.2022.100259] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
19 |
Lemes AC, Egea MB, Oliveira Filho JGD, Gautério GV, Ribeiro BD, Coelho MAZ. Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Front Bioeng Biotechnol 2022;9:802543. [DOI: 10.3389/fbioe.2021.802543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
20 |
Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022;48:972-92. [PMID: 36161374 DOI: 10.1002/biof.1889] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
21 |
Ferreira KC, Bento JAC, Caliari M, Bassinello PZ, Berrios JDJ. Dry bean proteins: Extraction methods, functionality, and application in products for human consumption. Cereal Chem 2022;99:67-77. [DOI: 10.1002/cche.10514] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
22 |
Sandoval-peraza M, Chel-guerrero L, Betancur-ancona D. Some physicochemical and functional properties of the rich fibrous fraction of hardened beans (Phaseolus vulgaris L.) and its addition in the formulation of beverages. International Journal of Gastronomy and Food Science 2021;26:100440. [DOI: 10.1016/j.ijgfs.2021.100440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
da Silva JR, de Cerqueira e Silva MB, Philadelpho BO, de Souza VC, dos Santos JEM, Castilho MS, de Souza Ferreira E, Cilli EM. PyrGF and GSTLN peptides enhance pravastatin's inhibition of 3-hydroxy-3-methyl-glutaryl coenzyme. Food Bioscience 2021;44:101451. [DOI: 10.1016/j.fbio.2021.101451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
24 |
Xiang X, Lang M, Li Y, Zhao X, Sun H, Jiang W, Ni L, Song Y. Purification, identification and molecular mechanism of dipeptidyl peptidase IV inhibitory peptides from discarded shrimp (Penaeus vannamei) head. J Chromatogr B Analyt Technol Biomed Life Sci 2021;1186:122990. [PMID: 34735973 DOI: 10.1016/j.jchromb.2021.122990] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
25 |
Rodrigues WPS, Ribeiro JVV, da Silva CRB, de Campos ITN, Xavier CH, Dos Santos FCA, Cruz MV, Fernandes KF. In vivo effect of orally given polyvinyl alcohol/starch nanocomposites containing bioactive peptides from Phaseolus vulgaris beans. Colloids Surf B Biointerfaces 2022;209:112213. [PMID: 34801977 DOI: 10.1016/j.colsurfb.2021.112213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
26 |
Nong NTP, Hsu JL. Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021;22:9508. [PMID: 34502417 DOI: 10.3390/ijms22179508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Antony P, Vijayan R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int J Mol Sci 2021;22:9059. [PMID: 34445765 DOI: 10.3390/ijms22169059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
28 |
Qiao Q, Chen L, Li X, Lu X, Xu Q. Roles of Dietary Bioactive Peptides in Redox Balance and Metabolic Disorders. Oxid Med Cell Longev 2021;2021:5582245. [PMID: 34234885 DOI: 10.1155/2021/5582245] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
29 |
Jiménez-Estrada M, Huerta-Reyes M, Tavera-Hernández R, Alvarado-Sansininea JJ, Alvarez AB. Contributions from Mexican Flora for the Treatment of Diabetes Mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell. Molecules 2021;26:2892. [PMID: 34068304 DOI: 10.3390/molecules26102892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
30 |
Graziani D, Ribeiro JVV, Cruz VS, Gomes RM, Araújo EG, Santos Júnior ACM, Tomaz HCM, Castro CH, Fontes W, Batista KA, Fernandes KF, Xavier CH. Oxidonitrergic and antioxidant effects of a low molecular weight peptide fraction from hardened bean (Phaseolus vulgaris) on endothelium. Braz J Med Biol Res 2021;54:e10423. [PMID: 33886808 DOI: 10.1590/1414-431X202010423] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Xiong Q, Li Z, Nie R, Meng X, Yang XJ. Comparison of the Effects of a Bean-Based and a White Rice-Based Breakfast Diet on Postprandial Glucose and Insulin Levels in Chinese Patients with Type 2 Diabetes. Med Sci Monit 2021;27:e930349. [PMID: 33785707 DOI: 10.12659/MSM.930349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
32 |
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020;9:E983. [PMID: 32718070 DOI: 10.3390/foods9080983] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
|
33 |
Famuwagun AA, Alashi AM, Gbadamosi OS, Taiwo KA, Oyedele D, Adebooye OC, Aluko RE. Antioxidant and enzymes inhibitory properties of Amaranth leaf protein hydrolyzates and ultrafiltration peptide fractions. J Food Biochem 2021;45:e13396. [PMID: 32692412 DOI: 10.1111/jfbc.13396] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
34 |
Karimi A, Azizi MH, Ahmadi Gavlighi H. Frationation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Sci Nutr 2020;8:2395-405. [PMID: 32405396 DOI: 10.1002/fsn3.1529] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
|
35 |
Obergan TY, Myasoedov NF, Grigorjeva ME, Lyapina LA, Shubina TA, Andreeva LA. Pharmacology complex compound of pro-gly-pro-leu with heparin: hypoglycemic, fibrinolitic and anticoagulant effects in rats with hyperglycemia. Farm farmakol (Pâtigorsk) 2019;7:300-7. [DOI: 10.19163/2307-9266-2019-7-5-300-307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|