BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oseguera-toledo ME, Gonzalez de Mejia E, Amaya-llano SL. Hard-to-cook bean ( Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Research International 2015;76:839-51. [DOI: 10.1016/j.foodres.2015.07.046] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 9.1] [Reference Citation Analysis]
Number Citing Articles
1 Darewicz M, Pliszka M, Borawska-Dziadkiewicz J, Minkiewicz P, Iwaniak A. Multi-Bioactivity of Protein Digests and Peptides from Oat (Avena sativa L.) Kernels in the Prevention of the Cardiometabolic Syndrome. Molecules 2022;27. [PMID: 36432008 DOI: 10.3390/molecules27227907] [Reference Citation Analysis]
2 Al-bukhaiti WQ, Al-dalali S, Noman A, Qiu S, Abed SM, Qiu S. Response Surface Modeling and Optimization of Enzymolysis Parameters for the In Vitro Antidiabetic Activities of Peanut Protein Hydrolysates Prepared Using Two Proteases. Foods 2022;11:3303. [DOI: 10.3390/foods11203303] [Reference Citation Analysis]
3 Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022;11:3300. [DOI: 10.3390/foods11203300] [Reference Citation Analysis]
4 Gharibzahedi SMT, Smith B, Altintas Z. Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: a review. Crit Rev Food Sci Nutr 2022;:1-31. [PMID: 36200775 DOI: 10.1080/10408398.2022.2124399] [Reference Citation Analysis]
5 Félix-medina JV, Sepúlveda-haro AG, Quintero-soto MF. Stability of antioxidant and hypoglycemic activities of peptide fractions of Maize (Zea mays L.) under different processes. Food Measure. [DOI: 10.1007/s11694-022-01618-5] [Reference Citation Analysis]
6 Karami Z, Duangmal K. Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. Food Reviews International. [DOI: 10.1080/87559129.2022.2122988] [Reference Citation Analysis]
7 Zhang M, Zhu L, Wu G, Liu T, Qi X, Zhang H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit Rev Food Sci Nutr 2022;:1-23. [PMID: 36095057 DOI: 10.1080/10408398.2022.2120454] [Reference Citation Analysis]
8 Virgen-carrillo CA, Valdés Miramontes EH, Fonseca Hernández D, Luna-vital DA, Mojica L. West Mexico Berries Modulate α-Amylase, α-Glucosidase and Pancreatic Lipase Using In Vitro and In Silico Approaches. Pharmaceuticals 2022;15:1081. [DOI: 10.3390/ph15091081] [Reference Citation Analysis]
9 Mostafa H, Al-ahbabi N, Adiamo OQ, Mudgil P, Maqsood S. Phoenix dactylifera L. seed protein hydrolysates as a potential source of peptides with antidiabetic and anti-hypercholesterolemic properties: An in vitro study. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.101916] [Reference Citation Analysis]
10 Aydemir LY, Diblan S, Aktas H, Cakitli G. Changes in bioactive properties of dry bean extracts during enzymatic hydrolysis and in vitro digestion steps. Food Measure. [DOI: 10.1007/s11694-022-01484-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Mahankali S, Kalava J, Garapati Y, Domathoti B, Maddumala VR, Sundramurty VP. A Treatment to Cure Diabetes Using Plant-Based Drug Discovery. Evid Based Complement Alternat Med 2022;2022:8621665. [PMID: 35586686 DOI: 10.1155/2022/8621665] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Singh BP, Bangar SP, Albaloosh M, Ajayi FF, Mudgil P, Maqsood S. Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Crit Rev Food Sci Nutr 2022;:1-22. [PMID: 35521961 DOI: 10.1080/10408398.2022.2067120] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Maleki S, Razavi SH, Yadav H. Diabetes and seeds: New horizon to promote human nutrition and anti-diabetics compounds in grains by germination. Crit Rev Food Sci Nutr 2022;:1-21. [PMID: 35442121 DOI: 10.1080/10408398.2022.2063793] [Reference Citation Analysis]
14 Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
15 Vidal-Limon A, Aguilar-Toalá JE, Liceaga AM. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J Agric Food Chem 2022. [PMID: 34990125 DOI: 10.1021/acs.jafc.1c06110] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
16 Rahimi R, Ahmadi Gavlighi H, Amini Sarteshnizi R, Barzegar M, Udenigwe CC. In vitro antioxidant activity and antidiabetic effect of fractionated potato protein hydrolysate via ultrafiltration and adsorption chromatography. LWT 2022;154:112765. [DOI: 10.1016/j.lwt.2021.112765] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
17 Cian RE, Nardo AE, Garzón AG, Añon MC, Drago SR. Identification and in silico study of a novel dipeptidyl peptidase IV inhibitory peptide derived from green seaweed Ulva spp. hydrolysates. LWT 2022;154:112738. [DOI: 10.1016/j.lwt.2021.112738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Liu W, Li H, Wen Y, Liu Y, Wang J, Sun B. Molecular Mechanism for the α-Glucosidase Inhibitory Effect of Wheat Germ Peptides. J Agric Food Chem 2021;69:15231-9. [PMID: 34874169 DOI: 10.1021/acs.jafc.1c06098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
19 Ramírez Fuentes L, Richard C, Chen L. Sequential alcalase and flavourzyme treatment for preparation of α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory peptides from oat protein. Journal of Functional Foods 2021;87:104829. [DOI: 10.1016/j.jff.2021.104829] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
20 Chen J, Yu X, Huang W, Wang C, He Q. A novel angiotensin-converting enzyme inhibitory peptide from rabbit meat protein hydrolysate: identification, molecular mechanism, and antihypertensive effect in vivo. Food Funct 2021;12:12077-86. [PMID: 34783331 DOI: 10.1039/d1fo02830h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Islam MS, Hongxin W, Admassu H, Mahdi AA, Chaoyang M, Wei FA. In vitro Antioxidant, Cytotoxic and Antidiabetic Activities of Protein Hydrolysates Prepared from Chinese Pond Turtle (Chinemys reevesii). Food Technol Biotechnol 2021;59:360-75. [PMID: 34759767 DOI: 10.17113/ftb.] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Kamal H, Mudgil P, Bhaskar B, Fisayo AF, Gan C, Maqsood S. Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. Journal of Cereal Science 2021;101:103308. [DOI: 10.1016/j.jcs.2021.103308] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
23 Sosa-crespo I, Espinosa-marrón A, Chel-guerrero L, Lavia-da-molina H, Betancur-ancona D. Postprandial Glycaemic Effect of a Peptide Fraction of Salvia Hispanica in Patients with Insulin Resistance. Journal of Biologically Active Products from Nature 2021;11:356-362. [DOI: 10.1080/22311866.2021.1942987] [Reference Citation Analysis]
24 Quintero-Soto MF, Chávez-Ontiveros J, Garzón-Tiznado JA, Salazar-Salas NY, Pineda-Hidalgo KV, Delgado-Vargas F, López-Valenzuela JA. Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. J Food Sci 2021;86:2962-77. [PMID: 34076269 DOI: 10.1111/1750-3841.15778] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
25 Gómez A, Gay C, Tironi V, Avanza MV. Structural and antioxidant properties of cowpea protein hydrolysates. Food Bioscience 2021;41:101074. [DOI: 10.1016/j.fbio.2021.101074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
26 Castañeda-pérez E, Jiménez-morales K, Castellanos-ruelas A, Chel-guerrero L, Betancur-ancona D. Antidiabetic Potential of Protein Hydrolysates and Peptide Fractions from Lima Bean (Phaseolus lunatus L): An In Vitro Study. Int J Pept Res Ther 2021;27:1979-88. [DOI: 10.1007/s10989-021-10226-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Wen L, Jiang Y, Zhou X, Bi H, Yang B. Structure identification of soybean peptides and their immunomodulatory activity. Food Chem 2021;359:129970. [PMID: 34015561 DOI: 10.1016/j.foodchem.2021.129970] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
28 Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chem 2021;354:129473. [PMID: 33743449 DOI: 10.1016/j.foodchem.2021.129473] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
29 Casarin ALF, Rasera GB, de Castro RJS. Combined biotransformation processes affect the antioxidant, antidiabetic and protease inhibitory properties of lentils. Process Biochemistry 2021;102:250-260. [DOI: 10.1016/j.procbio.2021.01.011] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Wu S, Lu S, Liu J, Yang S, Yan Q, Jiang Z. Physicochemical Properties and Bioactivities of Rice Beans Fermented by Bacillus amyloliquefaciens. Engineering 2021;7:219-25. [DOI: 10.1016/j.eng.2020.10.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
31 Abdulrahman BO, Bala M, Bello OM. Bioactive Compounds of Black Bean (Phaseolus vulgaris L.). Reference Series in Phytochemistry 2021. [DOI: 10.1007/978-3-030-57415-4_38] [Reference Citation Analysis]
32 Xu F, Gonzalez de Mejia E. Methodologies for bioactivity assay: animal study. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00022-4] [Reference Citation Analysis]
33 Balderas-león I, Baigts-allende D, Cardador-martínez A. Antioxidant, angiotensin-converting enzyme, and α-amylase inhibitory activities of protein hydrolysates of Leucaena leucocephala seeds. CyTA - Journal of Food 2021;19:349-359. [DOI: 10.1080/19476337.2021.1909144] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Amigo-benavent M, Khalesi M, Thapa G, Fitzgerald RJ. Methodologies for bioactivity assay: biochemical study. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00030-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Moreno C, Mojica L, González de Mejía E, Camacho Ruiz RM, Luna-Vital DA. Combinations of Legume Protein Hydrolysates Synergistically Inhibit Biological Markers Associated with Adipogenesis. Foods 2020;9:E1678. [PMID: 33212815 DOI: 10.3390/foods9111678] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
36 Mirzapour-kouhdasht A, Moosavi-nasab M, Krishnaswamy K, Khalesi M. Optimization of gelatin production from Barred mackerel by-products: Characterization and hydrolysis using native and commercial proteases. Food Hydrocolloids 2020;108:105970. [DOI: 10.1016/j.foodhyd.2020.105970] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 7.3] [Reference Citation Analysis]
37 Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020;165:2143-96. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Cited by in Crossref: 72] [Cited by in F6Publishing: 58] [Article Influence: 24.0] [Reference Citation Analysis]
38 Flores‐medellín SA, Camacho‐ruiz RM, Guízar‐gonzález C, Rivera‐leon EA, Llamas‐covarrubias IM, Mojica L. Protein hydrolysates and phenolic compounds from fermented black beans inhibit markers related to obesity and type‐2 diabetes. Legume Science 2021;3. [DOI: 10.1002/leg3.64] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Olagunju AI, Omoba OS, Enujiugha VN, Alashi AM, Aluko RE. Thermoase-hydrolysed pigeon pea protein and its membrane fractions possess in vitro bioactive properties (antioxidative, antihypertensive, and antidiabetic). J Food Biochem 2021;45:e13429. [PMID: 32776555 DOI: 10.1111/jfbc.13429] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
40 Montiel-aguilar LJ, Torres-castillo JA, Rodríguez-servin R, López-flores AB, Aguirre-arzola VE, Méndez-zamora G, Sinagawa-garcía SR. Nutraceutical effects of bioactive peptides obtained from Pterophylla beltrani (Bolivar & Bolivar) protein isolates. Journal of Asia-Pacific Entomology 2020;23:756-61. [DOI: 10.1016/j.aspen.2020.06.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
41 Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020;9:E983. [PMID: 32718070 DOI: 10.3390/foods9080983] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
42 Ohara A, Cason VG, Nishide TG, Miranda de Matos F, de Castro RJS. Improving the antioxidant and antidiabetic properties of common bean proteins by enzymatic hydrolysis using a blend of proteases. Biocatalysis and Biotransformation 2021;39:100-8. [DOI: 10.1080/10242422.2020.1789114] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
43 de Souza TSP, Dias FFG, Oliveira JPS, de Moura Bell JMLN, Koblitz MGB. Biological properties of almond proteins produced by aqueous and enzyme-assisted aqueous extraction processes from almond cake. Sci Rep 2020;10:10873. [PMID: 32616827 DOI: 10.1038/s41598-020-67682-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
44 de Fátima Garcia B, de Barros M, de Souza Rocha T. Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Crit Rev Food Sci Nutr 2021;61:2003-21. [PMID: 32478570 DOI: 10.1080/10408398.2020.1768047] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
45 Los FGB, Demiate IM, Prestes Dornelles RC, Lamsal B. Enzymatic hydrolysis of Carioca bean (Phaseolus vulgaris L.) protein as an alternative to commercially rejected grains. LWT 2020;125:109191. [DOI: 10.1016/j.lwt.2020.109191] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
46 Bhullar KS, Wu J. Dietary peptides in aging: Evidence and prospects. Food Science and Human Wellness 2020;9:1-7. [DOI: 10.1016/j.fshw.2020.01.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
47 Luzardo‐ocampo I, Cuellar‐nuñez ML, Oomah BD, Loarca‐piña G. Pulse By‐products. In: Campos‐vega R, Oomah BD, Vergara‐castañeda HA, editors. Food Wastes and By‐products. Wiley; 2020. pp. 59-92. [DOI: 10.1002/9781119534167.ch3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
48 Abdulrahman BO, Bala M, Bello OM. Bioactive Compounds of Black Bean (Phaseolus vulgaris L.). Reference Series in Phytochemistry 2020. [DOI: 10.1007/978-3-030-44578-2_38-1] [Reference Citation Analysis]
49 Magro AEA, Silva LC, Rasera GB, de Castro RJS. Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresour Bioprocess 2019;6. [DOI: 10.1186/s40643-019-0273-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
50 Patil SP, Goswami A, Kalia K, Kate AS. Plant-Derived Bioactive Peptides: A Treatment to Cure Diabetes. Int J Pept Res Ther 2020;26:955-68. [PMID: 32435169 DOI: 10.1007/s10989-019-09899-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 9.8] [Reference Citation Analysis]
51 Valencia-Mejía E, Batista KA, Fernández JJA, Fernandes KF. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.). Food Res Int 2019;121:238-46. [PMID: 31108745 DOI: 10.1016/j.foodres.2019.03.043] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
52 Castañeda-pérez E, Jiménez-morales K, Quintal-novelo C, Moo-puc R, Chel-guerrero L, Betancur-ancona D. Enzymatic protein hydrolysates and ultrafiltered peptide fractions from Cowpea Vigna unguiculata L bean with in vitro antidiabetic potential. J IRAN CHEM SOC 2019;16:1773-81. [DOI: 10.1007/s13738-019-01651-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
53 Xu F, Yao Y, Xu X, Wang M, Pan M, Ji S, Wu J, Jiang D, Ju X, Wang L. Identification and Quantification of DPP-IV-Inhibitory Peptides from Hydrolyzed-Rapeseed-Protein-Derived Napin with Analysis of the Interactions between Key Residues and Protein Domains. J Agric Food Chem 2019;67:3679-90. [DOI: 10.1021/acs.jafc.9b01069] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 9.5] [Reference Citation Analysis]
54 Alavi F, Jamshidian M, Rezaei K. Applying native proteases from melon to hydrolyze kilka fish proteins (Clupeonella cultriventris caspia) compared to commercial enzyme Alcalase. Food Chemistry 2019;277:314-22. [DOI: 10.1016/j.foodchem.2018.10.122] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
55 Yan J, Zhao J, Yang R, Zhao W. Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol 2019;54:1909-19. [DOI: 10.1111/ijfs.14090] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
56 Awosika TO, Aluko RE. Inhibition of the in vitro activities of α‐amylase, α‐glucosidase and pancreatic lipase by yellow field pea ( Pisum sativum L.) protein hydrolysates. Int J Food Sci Technol 2019;54:2021-34. [DOI: 10.1111/ijfs.14087] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 14.0] [Reference Citation Analysis]
57 Kehinde BA, Sharma P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Crit Rev Food Sci Nutr 2020;60:322-40. [PMID: 30463420 DOI: 10.1080/10408398.2018.1528206] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 9.8] [Reference Citation Analysis]
58 Zhang Y, Liu H, Hong H, Luo Y. Purification and identification of dipeptidyl peptidase IV and angiotensin-converting enzyme inhibitory peptides from silver carp (Hypophthalmichthys molitrix) muscle hydrolysate. Eur Food Res Technol 2019;245:243-55. [DOI: 10.1007/s00217-018-3157-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
59 Meza-espinoza L, de los Ángeles Vivar-vera M, de Lourdes García-magaña M, Sáyago-ayerdi SG, Chacón-lópez A, Becerrea-verdín EM, Montalvo-gonzález E. Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases. Food Sci Biotechnol. [DOI: 10.1007/s10068-017-0244-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
60 González-Montoya M, Hernández-Ledesma B, Mora-Escobedo R, Martínez-Villaluenga C. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. Int J Mol Sci 2018;19:E2883. [PMID: 30249015 DOI: 10.3390/ijms19102883] [Cited by in Crossref: 65] [Cited by in F6Publishing: 70] [Article Influence: 13.0] [Reference Citation Analysis]
61 Nuñez-aragón PN, Segura-campos M, Negrete-león E, Acevedo-fernández JJ, Betancur-ancona D, Chel-guerrero L, Castañeda-corral G. Protein hydrolysates and ultrafiltered < 1 KDa fractions from Phaseolus lunatus , Phaseolus vulgaris and Mucuna pruriens exhibit antihyperglycemic activity, intestinal glucose absorption and α -glucosidase inhibition with no acute toxicity in rodents: Antihyperglycemic activity and toxicity of protein hydrolysates of three legumes. J Sci Food Agric 2019;99:587-95. [DOI: 10.1002/jsfa.9219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
62 Orona-tamayo D, Valverde ME, Paredes-lópez O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Critical Reviews in Food Science and Nutrition 2018;59:1949-75. [DOI: 10.1080/10408398.2018.1434480] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 6.2] [Reference Citation Analysis]
63 Ramadhan AH, Nawas T, Zhang X, Pembe WM, Xia W, Xu Y. Purification and identification of a novel antidiabetic peptide from Chinese giant salamander ( Andrias davidianus ) protein hydrolysate against α-amylase and α-glucosidase. International Journal of Food Properties 2017;20:S3360-72. [DOI: 10.1080/10942912.2017.1354885] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 5.4] [Reference Citation Analysis]
64 dos Santos Aguilar JG, Sato HH. Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International 2018;103:253-62. [DOI: 10.1016/j.foodres.2017.10.044] [Cited by in Crossref: 86] [Cited by in F6Publishing: 91] [Article Influence: 17.2] [Reference Citation Analysis]
65 Ganesan K, Xu B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int J Mol Sci 2017;18:E2331. [PMID: 29113066 DOI: 10.3390/ijms18112331] [Cited by in Crossref: 102] [Cited by in F6Publishing: 106] [Article Influence: 17.0] [Reference Citation Analysis]
66 Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr 2018;58:3097-129. [PMID: 29020461 DOI: 10.1080/10408398.2017.1352564] [Cited by in Crossref: 70] [Cited by in F6Publishing: 53] [Article Influence: 11.7] [Reference Citation Analysis]
67 Mazorra-manzano MA, Ramírez-suarez JC, Yada RY. Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition 2018;58:2147-63. [DOI: 10.1080/10408398.2017.1308312] [Cited by in Crossref: 73] [Cited by in F6Publishing: 58] [Article Influence: 12.2] [Reference Citation Analysis]
68 Vilcacundo R, Martínez-villaluenga C, Hernández-ledesma B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods 2017;35:531-9. [DOI: 10.1016/j.jff.2017.06.024] [Cited by in Crossref: 119] [Cited by in F6Publishing: 132] [Article Influence: 19.8] [Reference Citation Analysis]
69 Abdelhedi O, Nasri R, Jridi M, Mora L, Oseguera-toledo ME, Aristoy M, Amara IB, Toldrá F, Nasri M. In silico analysis and antihypertensive effect of ACE-inhibitory peptides from smooth-hound viscera protein hydrolysate: Enzyme-peptide interaction study using molecular docking simulation. Process Biochemistry 2017;58:145-59. [DOI: 10.1016/j.procbio.2017.04.032] [Cited by in Crossref: 40] [Cited by in F6Publishing: 25] [Article Influence: 6.7] [Reference Citation Analysis]
70 Mojica L, Gonzalez de Mejia E, Granados-silvestre MÁ, Menjivar M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. Journal of Functional Foods 2017;31:274-86. [DOI: 10.1016/j.jff.2017.02.006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 8.7] [Reference Citation Analysis]
71 Silva FGDE, Hernández-ledesma B, Amigo L, Netto FM, Miralles B. Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT - Food Science and Technology 2017;76:140-6. [DOI: 10.1016/j.lwt.2016.10.049] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 8.3] [Reference Citation Analysis]
72 Mojica L, de Mejía EG. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct 2016;7:713-27. [PMID: 26824775 DOI: 10.1039/c5fo01204j] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 10.0] [Reference Citation Analysis]
73 Oseguera Toledo ME, Gonzalez de Mejia E, Sivaguru M, Amaya-llano SL. Common bean ( Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro. Journal of Functional Foods 2016;27:160-77. [DOI: 10.1016/j.jff.2016.09.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
74 Mojica L, Luna-Vital DA, González de Mejía E. Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. J Sci Food Agric 2017;97:2401-10. [PMID: 27664971 DOI: 10.1002/jsfa.8053] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 7.7] [Reference Citation Analysis]
75 Lacroix IM, Li-chan EC. Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation – Current knowledge and future research considerations. Trends in Food Science & Technology 2016;54:1-16. [DOI: 10.1016/j.tifs.2016.05.008] [Cited by in Crossref: 104] [Cited by in F6Publishing: 106] [Article Influence: 14.9] [Reference Citation Analysis]
76 Intiquilla A, Jiménez-aliaga K, Zavaleta AI, Arnao I, Peña C, Chavez-hidalgo EL, Hernández-ledesma B. Erythrina Edulis (Pajuro) Seed Protein: A New Source of Antioxidant Peptides. Natural Product Communications 2016;11:1934578X1601100. [DOI: 10.1177/1934578x1601100620] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
77 Nongonierma AB, Fitzgerald RJ. Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Current Opinion in Food Science 2016;8:19-24. [DOI: 10.1016/j.cofs.2016.01.007] [Cited by in Crossref: 53] [Cited by in F6Publishing: 35] [Article Influence: 7.6] [Reference Citation Analysis]
78 López-Barrios L, Antunes-Ricardo M, Gutiérrez-Uribe JA. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chem 2016;203:417-24. [PMID: 26948633 DOI: 10.1016/j.foodchem.2016.02.048] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 6.9] [Reference Citation Analysis]