1 |
Beaubier S, Pineda-Vadillo C, Mesieres O, Framboisier X, Galet O, Kapel R. Improving the in vitro digestibility of rapeseed albumins resistant to gastrointestinal proteolysis while preserving the functional properties using enzymatic hydrolysis. Food Chem 2023;407:135132. [PMID: 36508873 DOI: 10.1016/j.foodchem.2022.135132] [Reference Citation Analysis]
|
2 |
Chitchumroonchokchai C, Riedl K, García-Cano I, Chaves F, Walsh KR, Jimenez-Flores R, Failla ML. Efficient in vitro digestion of lipids and proteins in bovine milk fat globule membrane ingredient (MFGMi) and whey-casein infant formula with added MFGMi. J Dairy Sci 2023:S0022-0302(23)00131-5. [PMID: 36935237 DOI: 10.3168/jds.2022-22763] [Reference Citation Analysis]
|
3 |
Sousa R, Recio I, Heimo D, Dubois S, Moughan PJ, Hodgkinson SM, Portmann R, Egger L. In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data. Food Chemistry 2023;404:134720. [DOI: 10.1016/j.foodchem.2022.134720] [Reference Citation Analysis]
|
4 |
Jiménez-Barrios P, Sánchez-Rivera L, Martínez-Maqueda D, Le Gouar Y, Dupont D, Miralles B, Recio I. Peptidomic Characterization and Amino Acid Availability after Intake of Casein vs. a Casein Hydrolysate in a Pig Model. Nutrients 2023;15. [PMID: 36904065 DOI: 10.3390/nu15051065] [Reference Citation Analysis]
|
5 |
Komatsu Y, Tsuda M, Wada Y, Shibasaki T, Nakamura H, Miyaji K. Nutritional Evaluation of Milk-, Plant-, and Insect-Based Protein Materials by Protein Digestibility Using the INFOGEST Digestion Method. J Agric Food Chem 2023;71:2503-13. [PMID: 36695832 DOI: 10.1021/acs.jafc.2c07273] [Reference Citation Analysis]
|
6 |
Ribes S, Genot M, Aubry L, Talens P, Vénien A, Santé-lhoutellier V, Peyron M. Oral impairments decrease the nutrient bioaccessibility of bread in the elderly. Food Hydrocolloids 2023;135:108202. [DOI: 10.1016/j.foodhyd.2022.108202] [Reference Citation Analysis]
|
7 |
Santos-hernández M, Vivanco-maroto SM, Miralles B, Recio I. Food peptides as inducers of CCK and GLP-1 secretion and GPCRs involved in enteroendocrine cell signalling. Food Chemistry 2023;402:134225. [DOI: 10.1016/j.foodchem.2022.134225] [Reference Citation Analysis]
|
8 |
Santos-hernández M, Kleekayai T, Fitzgerald RJ. Production of bioactive peptides from bovine whey proteins. Enzymes Beyond Traditional Applications in Dairy Science and Technology 2023. [DOI: 10.1016/b978-0-323-96010-6.00008-4] [Reference Citation Analysis]
|
9 |
Magouz O, Mehanna N, Khalifa M, Sakr H, Gensberger-reigl S, Dalabasmaz S, Pischetsrieder M. Profiles, antioxidative and ACE inhibitory activity of peptides released from fermented buttermilk before and after simulated gastrointestinal digestion. Innovative Food Science & Emerging Technologies 2023. [DOI: 10.1016/j.ifset.2022.103266] [Reference Citation Analysis]
|
10 |
Dary Guerra-fajardo L, Pavón-pérez J, Vallejos-almirall A, Jorquera-pereira D. Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chemistry 2022;397:133784. [DOI: 10.1016/j.foodchem.2022.133784] [Reference Citation Analysis]
|
11 |
Darewicz M, Pliszka M, Borawska-Dziadkiewicz J, Minkiewicz P, Iwaniak A. Multi-Bioactivity of Protein Digests and Peptides from Oat (Avena sativa L.) Kernels in the Prevention of the Cardiometabolic Syndrome. Molecules 2022;27. [PMID: 36432008 DOI: 10.3390/molecules27227907] [Reference Citation Analysis]
|
12 |
Allouche R, Genay M, Dary-Mourot A, Hafeez Z, Miclo L. Cell Proteins Obtained by Peptic Shaving of Two Phenotypically Different Strains of Streptococcus thermophilus as a Source of Anti-Inflammatory Peptides. Nutrients 2022;14. [PMID: 36432464 DOI: 10.3390/nu14224777] [Reference Citation Analysis]
|
13 |
Jia W, Zhu J, Wang X, Peng J, Shi L. Covalent or non-covalent binding of polyphenols, polysaccharides, metal ions and nanoparticles to beta-lactoglobulin and advanced processing techniques: Reduce allergenicity and regulate digestion of beta-lactoglobulin. Trends in Food Science & Technology 2022. [DOI: 10.1016/j.tifs.2022.11.012] [Reference Citation Analysis]
|
14 |
Chen C, Fan S, Shangguan C, Zhang J. Evaluation of the effects of simulated in vitro digestion by Gastrodia elata on biological activity and gut microflora regulation. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.102147] [Reference Citation Analysis]
|
15 |
Sabet S, Kirjoranta SJ, Lampi A, Lehtonen M, Pulkkinen E, Valoppi F. Addressing criticalities in the INFOGEST static in vitro digestion protocol for oleogel analysis. Food Research International 2022;160:111633. [DOI: 10.1016/j.foodres.2022.111633] [Reference Citation Analysis]
|
16 |
Liu B, Qiao W, Zhang M, Liu Y, Zhao J, Chen L. Bovine milk with variant β-casein types on immunological mediated intestinal changes and gut health of mice. Front Nutr 2022;9. [DOI: 10.3389/fnut.2022.970685] [Reference Citation Analysis]
|
17 |
García-Casas VE, Seiquer I, Pardo Z, Haro A, Recio I, Olías R. Antioxidant Potential of the Sweet Whey-Based Beverage Colada after the Digestive Process and Relationships with the Lipid and Protein Fractions. Antioxidants (Basel) 2022;11. [PMID: 36139901 DOI: 10.3390/antiox11091827] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Liu G, Guo B, Luo M, Sun S, Lin Q, Kan Q, He Z, Miao J, Du H, Xiao H, Cao Y. A comprehensive review on preparation, structure-activities relationship, and calcium bioavailability of casein phosphopeptides. Crit Rev Food Sci Nutr 2022;:1-19. [PMID: 36052610 DOI: 10.1080/10408398.2022.2111546] [Reference Citation Analysis]
|
19 |
Caira S, Picariello G, Renzone G, Arena S, Troise AD, De Pascale S, Ciaravolo V, Pinto G, Addeo F, Scaloni A. Recent developments in peptidomics for the quali-quantitative analysis of food-derived peptides in human body fluids and tissues. Trends in Food Science & Technology 2022;126:41-60. [DOI: 10.1016/j.tifs.2022.06.014] [Reference Citation Analysis]
|
20 |
Koev TT, Harris HC, Kiamehr S, Khimyak YZ, Warren FJ. Starch hydrogels as targeted colonic drug delivery vehicles. Carbohydrate Polymers 2022;289:119413. [DOI: 10.1016/j.carbpol.2022.119413] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Vivanco-maroto SM, Santos-hernández M, Sanchón J, Picariello G, Recio I, Miralles B. In vitro digestion of milk proteins including intestinal brush border membrane peptidases. Transepithelial transport of resistant casein domains. Food Research International 2022;157:111238. [DOI: 10.1016/j.foodres.2022.111238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Tenenbaum M, Deracinois B, Dugardin C, Matéos A, Romelard A, Auger J, Boulier A, Ravallec R, Flahaut C, Cudennec B. Identification, production and bioactivity of casein phosphopeptides – A review. Food Research International 2022;157:111360. [DOI: 10.1016/j.foodres.2022.111360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Ghiamati Yazdi F, Barner Dalgaard L, Li Q, Ruscheweyh H, Thøgersen R, Christine Bertram H, Hansen M, Schwab C. Long-term daily high-protein, drained yoghurt consumption alters abundance of selected functional groups of the human gut microbiota and fecal short-chain fatty acid profiles in a cohort of overweight and obese women. Journal of Functional Foods 2022;93:105089. [DOI: 10.1016/j.jff.2022.105089] [Reference Citation Analysis]
|
24 |
Fontes-candia C, Jiménez-barrios P, Miralles B, Recio I, López-rubio A, Martínez-sanz M. Development of polysaccharide-casein gel-like structures resistant to in vitro gastric digestion. Food Hydrocolloids 2022;127:107505. [DOI: 10.1016/j.foodhyd.2022.107505] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
25 |
Vinod SM, Sangeetha MS, Thamarai Selvan R, Shoba G, Tamizhdurai P, Kumaran R. Molecular docking approach on the molecular interactions involving beta-lactoglobulin (βLG)-4-Dicyanomethylene2,6-Dimethyl-4-Hpyran (DDP) dye in the presence of an antibiotic, norfloxacin. Journal of the Indian Chemical Society 2022;99:100477. [DOI: 10.1016/j.jics.2022.100477] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Ma X, Yang F, Meng X, Wu Y, Tong P, Gao J, Chen H, Li X. Immunomodulatory Role of BLG-Derived Peptides Based on Simulated Gastrointestinal Digestion and DC-T Cell from Mice Allergic to Cow's Milk. Foods 2022;11:1450. [PMID: 35627020 DOI: 10.3390/foods11101450] [Reference Citation Analysis]
|
27 |
Tamargo A, Cueva C, Silva M, Molinero N, Miralles B, Bartolomé B, Moreno-arribas MV. Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota. Food Research International 2022;155:111010. [DOI: 10.1016/j.foodres.2022.111010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
28 |
Halabi A, Croguennec T, Ménard O, Briard-bion V, Jardin J, Le Gouar Y, Hennetier M, Bouhallab S, Dupont D, Deglaire A. Protein structure in model infant milk formulas impacts their kinetics of hydrolysis under in vitro dynamic digestion. Food Hydrocolloids 2022;126:107368. [DOI: 10.1016/j.foodhyd.2021.107368] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
29 |
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐ernst KI, Maciuk A, Mangelsdorf I, Mcardle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Fernández Dumont A, Noriega Fernández E, Knutsen HK; EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA). Safety of Beta‐lactoglobulin as a Novel food pursuant to Regulation (EU) 2015/2283. EFS2 2022;20. [DOI: 10.2903/j.efsa.2022.7204] [Reference Citation Analysis]
|
30 |
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. International Dairy Journal 2022;127:105208. [DOI: 10.1016/j.idairyj.2021.105208] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
|
31 |
Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf 2022. [PMID: 35150206 DOI: 10.1111/1541-4337.12917] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
32 |
Junejo SA, Flanagan BM, Zhang B, Dhital S. Starch structure and nutritional functionality - Past revelations and future prospects. Carbohydr Polym 2022;277:118837. [PMID: 34893254 DOI: 10.1016/j.carbpol.2021.118837] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
33 |
Santos-hernández M, Recio I, Amigo L. Electrophoresis. Encyclopedia of Dairy Sciences 2022. [DOI: 10.1016/b978-0-12-818766-1.00115-x] [Reference Citation Analysis]
|
34 |
Sentandreu E, Sentandreu MÁ. Technological developments of food peptidomics. Food Proteomics 2022. [DOI: 10.1016/b978-0-323-90889-4.00009-9] [Reference Citation Analysis]
|
35 |
Dullius A, Rama GR, Giroldi M, Goettert MI, Lehn DN, Volken de Souza CF. Bioactive peptide production in fermented foods. Current Developments in Biotechnology and Bioengineering 2022. [DOI: 10.1016/b978-0-12-823506-5.00009-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
36 |
Vasquez-Rojas WV, Martín D, Miralles B, Recio I, Fornari T, Cano MP. Composition of Brazil Nut (Bertholletia excels HBK), Its Beverage and By-Products: A Healthy Food and Potential Source of Ingredients. Foods 2021;10:3007. [PMID: 34945560 DOI: 10.3390/foods10123007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
37 |
Ariëns RM, Bastiaan-net S, van de Berg-somhorst DB, El Bachrioui K, Boudewijn A, van den Dool RT, de Jong GA, Wichers HJ, Mes JJ. Comparing nutritional and digestibility aspects of sustainable proteins using the INFOGEST digestion protocol. Journal of Functional Foods 2021;87:104748. [DOI: 10.1016/j.jff.2021.104748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
38 |
Tormási J, Abrankó L. Assessment of Fatty Acid-Specific Lipolysis by In Vitro Digestion and GC-FID. Nutrients 2021;13:3889. [PMID: 34836142 DOI: 10.3390/nu13113889] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
39 |
Xavier AA, Mariutti LR. Static and semi-dynamic in vitro digestion methods: state of the art and recent achievements towards standardization. Current Opinion in Food Science 2021;41:260-73. [DOI: 10.1016/j.cofs.2021.08.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
40 |
Daniloski D, Mccarthy NA, Vasiljevic T. Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends in Food Science & Technology 2021;116:681-700. [DOI: 10.1016/j.tifs.2021.08.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
41 |
Colombo R, Ferron L, Frosi I, Papetti A. Advances in static in vitro digestion models after the COST action Infogest consensus protocol. Food Funct 2021;12:7619-36. [PMID: 34250533 DOI: 10.1039/d1fo01089a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
42 |
Hu S, Lin S, Wang D, Zhang S, Sun N. Antarctic krill-derived peptides with consecutive Glu residues enhanced iron binding, solubility, and absorption. Food Funct 2021. [PMID: 34346465 DOI: 10.1039/d1fo01405f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
43 |
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021;11:2416-48. [PMID: 34522593 DOI: 10.1016/j.apsb.2021.04.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
|
44 |
Sheng B, Nielsen SD, Poulsen NA, Larsen LB. Differential in vitro digestion rates in gastric phase of bovine milk with different κ-casein phenotypes. J Dairy Sci 2021;104:10462-72. [PMID: 34218908 DOI: 10.3168/jds.2020-20073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
45 |
Wada Y, Lönnerdal B. Bioactive peptides derived from human milk proteins: an update. Curr Opin Clin Nutr Metab Care 2020;23:217-22. [PMID: 32068546 DOI: 10.1097/MCO.0000000000000642] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
46 |
Xue H, Han J, He B, Yi M, Liu X, Song H, Li J. Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats. Food Funct 2021;12:5157-70. [PMID: 33977978 DOI: 10.1039/d1fo00356a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
47 |
Wu P, Chen XD. Validation of in vitro bioaccessibility assays — a key aspect in the rational design of functional foods towards tailored bioavailability. Current Opinion in Food Science 2021;39:160-70. [DOI: 10.1016/j.cofs.2021.03.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
|
48 |
Mezzomo TR, Martins CAF, da Silva Marcondes DB, Mischiatti KL, Weffort-santos AM. Assessment of the Functional Activities of Casein Phosphopeptides on Circulating Blood Leukocytes. Int J Pept Res Ther 2021;27:1265-1280. [DOI: 10.1007/s10989-021-10166-3] [Reference Citation Analysis]
|
49 |
Martini S, Solieri L, Tagliazucchi D. Peptidomics: new trends in food science. Current Opinion in Food Science 2021;39:51-9. [DOI: 10.1016/j.cofs.2020.12.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
|
50 |
Drawbridge PC, Apea-Bah F, Silveira Hornung P, Beta T. Bioaccessibility of phenolic acids in Canadian hulless barley varieties. Food Chem 2021;358:129905. [PMID: 33940288 DOI: 10.1016/j.foodchem.2021.129905] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
51 |
Rieder A, Afseth NK, Böcker U, Knutsen SH, Kirkhus B, Mæhre HK, Ballance S, Wubshet SG. Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chem 2021;358:129830. [PMID: 33940301 DOI: 10.1016/j.foodchem.2021.129830] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
|
52 |
Chen W, Liao A, Hou Y, Pan L, Yu G, Du J, Yang C, Li X, Huang J. Digestive characteristics and peptide release from wheat embryo proteins in vitro. Food Funct 2021;12:2257-69. [PMID: 33596303 DOI: 10.1039/d0fo03193c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
53 |
Beverly RL, Woonnimani P, Scottoline BP, Lueangsakulthai J, Dallas DC. Peptides from the Intestinal Tract of Breast Milk-Fed Infants Have Antimicrobial and Bifidogenic Activity. Int J Mol Sci 2021;22:2377. [PMID: 33673498 DOI: 10.3390/ijms22052377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
54 |
Liu Y, Dong X, Wang B, Tian R, Li J, Liu L, Du G, Chen J. Food synthetic biology-driven protein supply transition: From animal-derived production to microbial fermentation. Chinese Journal of Chemical Engineering 2021;30:29-36. [DOI: 10.1016/j.cjche.2020.11.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
55 |
Bao X, Yuan X, Feng G, Zhang M, Ma S. Structural characterization of calcium-binding sunflower seed and peanut peptides and enhanced calcium transport by calcium complexes in Caco-2 cells. J Sci Food Agric 2021;101:794-804. [PMID: 32898305 DOI: 10.1002/jsfa.10800] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
56 |
Bøgh KL, Larsen JM. Reducing Allergenicity by Proteolysis. Agents of Change 2021. [DOI: 10.1007/978-3-030-55482-8_19] [Reference Citation Analysis]
|
57 |
Tomé D. Protein quality and sources. Reference Module in Food Science 2021. [DOI: 10.1016/b978-0-12-821848-8.00028-7] [Reference Citation Analysis]
|
58 |
Kleekayai T, Cermeño M, Fitzgerald RJ. The Production of Bioactive Peptides from Milk Proteins. Agents of Change 2021. [DOI: 10.1007/978-3-030-55482-8_18] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
59 |
Santos-hernández M, Alfieri F, Gallo V, Miralles B, Masi P, Romano A, Ferranti P, Recio I. Compared digestibility of plant protein isolates by using the INFOGEST digestion protocol. Food Research International 2020;137:109708. [DOI: 10.1016/j.foodres.2020.109708] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
|
60 |
Corrigan B, Brodkorb A. The effect of pre-treatment of protein ingredients for infant formula on their in vitro gastro-intestinal behaviour. International Dairy Journal 2020;110:104810. [DOI: 10.1016/j.idairyj.2020.104810] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
61 |
Raveschot C, Deracinois B, Bertrand E, Flahaut C, Frémont M, Drider D, Dhulster P, Cudennec B, Coutte F. Integrated Continuous Bioprocess Development for ACE-Inhibitory Peptide Production by Lactobacillus helveticus Strains in Membrane Bioreactor. Front Bioeng Biotechnol 2020;8:585815. [PMID: 33102467 DOI: 10.3389/fbioe.2020.585815] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
62 |
Miralles B, Sanchón J, Sánchez-Rivera L, Martínez-Maqueda D, Le Gouar Y, Dupont D, Amigo L, Recio I. Digestion of micellar casein in duodenum cannulated pigs. Correlation between in vitro simulated gastric digestion and in vivo data. Food Chem 2021;343:128424. [PMID: 33127229 DOI: 10.1016/j.foodchem.2020.128424] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
63 |
Ozorio L, Mellinger-Silva C, Cabral LMC, Jardin J, Boudry G, Dupont D. The Influence of Peptidases in Intestinal Brush Border Membranes on the Absorption of Oligopeptides from Whey Protein Hydrolysate: An Ex Vivo Study Using an Ussing Chamber. Foods 2020;9:E1415. [PMID: 33036372 DOI: 10.3390/foods9101415] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
64 |
Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020;64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
65 |
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020;25:E4479. [PMID: 33003506 DOI: 10.3390/molecules25194479] [Cited by in Crossref: 41] [Cited by in F6Publishing: 47] [Article Influence: 13.7] [Reference Citation Analysis]
|
66 |
Shen J, Mu C, Wang H, Huang Z, Yu K, Zoetendal EG, Zhu W. Stimulation of Gastric Transit Function Driven by Hydrolyzed Casein Increases Small Intestinal Carbohydrate Availability and Its Microbial Metabolism. Mol Nutr Food Res 2020;64:e2000250. [PMID: 32945612 DOI: 10.1002/mnfr.202000250] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
67 |
Paulo F, Santos L. New insights in the in vitro release of phenolic antioxidants: The case study of the release behavior of tyrosol from tyrosol-loaded ethylcellulose microparticles during the in vitro gastrointestinal digestion. Colloids Surf B Biointerfaces 2020;196:111339. [PMID: 32911295 DOI: 10.1016/j.colsurfb.2020.111339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
68 |
Wang W, Li Y, Zhou X, Li C, Liu Y. Changes in the extent and products of In vitro protein digestion during the ripening periods of Chinese dry-cured hams. Meat Sci 2021;171:108290. [PMID: 32949821 DOI: 10.1016/j.meatsci.2020.108290] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
|
69 |
Guantario B, Giribaldi M, Devirgiliis C, Finamore A, Colombino E, Capucchio MT, Evangelista R, Motta V, Zinno P, Cirrincione S, Antoniazzi S, Cavallarin L, Roselli M. A Comprehensive Evaluation of the Impact of Bovine Milk Containing Different Beta-Casein Profiles on Gut Health of Ageing Mice. Nutrients 2020;12:E2147. [PMID: 32707687 DOI: 10.3390/nu12072147] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
70 |
Deng Y, Govers C, Tomassen M, Hettinga K, Wichers HJ. Heat treatment of β-lactoglobulin affects its digestion and translocation in the upper digestive tract. Food Chem 2020;330:127184. [PMID: 32531635 DOI: 10.1016/j.foodchem.2020.127184] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
71 |
Ozorio L, Matsubara NK, da Silva-Santos JE, Henry G, Le Gouar Y, Jardin J, Mellinger-Silva C, Cabral LMC, Dupont D. Gastrointestinal digestion enhances the endothelium-dependent vasodilation of a whey hydrolysate in rat aortic rings. Food Res Int 2020;133:109188. [PMID: 32466916 DOI: 10.1016/j.foodres.2020.109188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
72 |
Santos-Hernández M, Amigo L, Recio I. Induction of CCK and GLP-1 release in enteroendocrine cells by egg white peptides generated during gastrointestinal digestion. Food Chem 2020;329:127188. [PMID: 32516710 DOI: 10.1016/j.foodchem.2020.127188] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
73 |
Benoit S, Chaumontet C, Schwarz J, Cakir-Kiefer C, Boulier A, Tomé D, Miclo L. Anxiolytic Activity and Brain Modulation Pattern of the α-Casozepine-Derived Pentapeptide YLGYL in Mice. Nutrients 2020;12:E1497. [PMID: 32455588 DOI: 10.3390/nu12051497] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
74 |
Berrazaga I, Bourlieu-Lacanal C, Laleg K, Jardin J, Briard-Bion V, Dupont D, Walrand S, Micard V. Effect of protein aggregation in wheat-legume mixed pasta diets on their in vitro digestion kinetics in comparison to "rapid" and "slow" animal proteins. PLoS One 2020;15:e0232425. [PMID: 32365065 DOI: 10.1371/journal.pone.0232425] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
75 |
Dekker PM, Boeren S, Wijga AH, Koppelman GH, Vervoort JJM, Hettinga KA. Maternal Allergy and the Presence of Nonhuman Proteinaceous Molecules in Human Milk. Nutrients 2020;12:E1169. [PMID: 32331315 DOI: 10.3390/nu12041169] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
|
76 |
Kleemann C, Schuster R, Rosenecker E, Selmer I, Smirnova I, Kulozik U. In-vitro-digestion and swelling kinetics of whey protein, egg white protein and sodium caseinate aerogels. Food Hydrocolloids 2020;101:105534. [DOI: 10.1016/j.foodhyd.2019.105534] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
77 |
Reyes-Díaz A, Del-Toro-Sánchez CL, Rodríguez-Figueroa JC, Valdéz-Hurtado S, Wong-Corral FJ, Borboa-Flores J, González-Osuna MF, Perez-Perez LM, González-Vega RI. Legume Proteins as a Promising Source of Anti-Inflammatory Peptides. Curr Protein Pept Sci 2019;20:1204-17. [PMID: 31208309 DOI: 10.2174/1389203720666190430110647] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
78 |
Nguyen HTH, Gathercole JL, Day L, Dalziel JE. Differences in peptide generation following in vitro gastrointestinal digestion of yogurt and milk from cow, sheep and goat. Food Chem 2020;317:126419. [PMID: 32088406 DOI: 10.1016/j.foodchem.2020.126419] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
|
79 |
Jiang S, Xia D, Zhang D, Chen G, Liu Y. Analysis of protein profiles and peptides during in vitro gastrointestinal digestion of four Chinese dry-cured hams. LWT 2020;120:108881. [DOI: 10.1016/j.lwt.2019.108881] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
80 |
Mackie A. Insights and gaps on protein digestion. Current Opinion in Food Science 2020;31:96-101. [DOI: 10.1016/j.cofs.2020.03.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
81 |
Dullius A, Fassina P, Giroldi M, Goettert MI, Volken de Souza CF. A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Res Int 2020;131:109002. [PMID: 32247480 DOI: 10.1016/j.foodres.2020.109002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
82 |
Sousa R, Portmann R, Dubois S, Recio I, Egger L. Protein digestion of different protein sources using the INFOGEST static digestion model. Food Res Int 2020;130:108996. [PMID: 32156409 DOI: 10.1016/j.foodres.2020.108996] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
|
83 |
Dupont D, Tomé D. Milk proteins: Digestion and absorption in the gastrointestinal tract. Milk Proteins 2020. [DOI: 10.1016/b978-0-12-815251-5.00020-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
84 |
Zenker HE, van Lieshout GAA, van Gool MP, Bragt MCE, Hettinga KA. Lysine blockage of milk proteins in infant formula impairs overall protein digestibility and peptide release. Food Funct 2020;11:358-69. [DOI: 10.1039/c9fo02097g] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
|
85 |
Giblin L, Yalçın AS, Biçim G, Krämer AC, Chen Z, Callanan MJ, Arranz E, Davies MJ. Whey proteins: targets of oxidation, or mediators of redox protection. Free Radic Res 2019;53:1136-52. [PMID: 31510814 DOI: 10.1080/10715762.2019.1632445] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
|
86 |
Giromini C, Lovegrove JA, Givens DI, Rebucci R, Pinotti L, Maffioli E, Tedeschi G, Sundaram TS, Baldi A. In vitro-digested milk proteins: Evaluation of angiotensin-1-converting enzyme inhibitory and antioxidant activities, peptidomic profile, and mucin gene expression in HT29-MTX cells. J Dairy Sci 2019;102:10760-71. [PMID: 31521344 DOI: 10.3168/jds.2019-16833] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
87 |
Sánchez-rivera L, Ferreira Santos P, Sevilla MA, Montero MJ, Recio I, Miralles B. Implication of Opioid Receptors in the Antihypertensive Effect of a Bovine Casein Hydrolysate and α s1 -Casein-Derived Peptides. J Agric Food Chem 2020;68:1877-83. [DOI: 10.1021/acs.jafc.9b03872] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
|
88 |
Asledottir T, Picariello G, Mamone G, Ferranti P, Røseth A, Devold TG, Vegarud GE. Degradation of β-casomorphin-7 through in vitro gastrointestinal and jejunal brush border membrane digestion. J Dairy Sci 2019;102:8622-9. [PMID: 31351730 DOI: 10.3168/jds.2019-16771] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
|
89 |
Üstün‐aytekin Ö, Şeker A, Arısoy S. The effect of in vitro gastrointestinal simulation on bioactivities of kefir. Int J Food Sci Technol 2019;55:283-92. [DOI: 10.1111/ijfs.14274] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
90 |
Mada SB, Ugwu CP, Abarshi MM. Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. Int J Pept Res Ther 2020;26:831-48. [DOI: 10.1007/s10989-019-09890-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
|
91 |
Fernández-tomé S, Hernández-ledesma B, Chaparro M, Indiano-romacho P, Bernardo D, Gisbert JP. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends in Food Science & Technology 2019;88:194-206. [DOI: 10.1016/j.tifs.2019.03.017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
|
92 |
Rafiee Tari N, Arranz E, Corredig M. Effect of protein composition of a model dairy matrix containing various levels of beta-casein on the structure and anti-inflammatory activity of in vitro digestates. Food Funct 2019;10:1870-9. [PMID: 30768115 DOI: 10.1039/c8fo01860j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
93 |
Sowmya K, Bhat MI, Bajaj R, Kapila S, Kapila R. Antioxidative and anti-inflammatory potential with trans-epithelial transport of a buffalo casein-derived hexapeptide (YFYPQL). Food Bioscience 2019;28:151-63. [DOI: 10.1016/j.fbio.2019.02.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
94 |
Dupont D, Ferranti P, Mackie A. The 5th International Conference on Food Digestion. Food Res Int 2019;118:1-3. [PMID: 30898344 DOI: 10.1016/j.foodres.2019.02.049] [Reference Citation Analysis]
|
95 |
Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, Bohn T, Bourlieu-Lacanal C, Boutrou R, Carrière F, Clemente A, Corredig M, Dupont D, Dufour C, Edwards C, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie AR, Martins C, Marze S, McClements DJ, Ménard O, Minekus M, Portmann R, Santos CN, Souchon I, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Recio I. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc 2019;14:991-1014. [PMID: 30886367 DOI: 10.1038/s41596-018-0119-1] [Cited by in Crossref: 748] [Cited by in F6Publishing: 798] [Article Influence: 187.0] [Reference Citation Analysis]
|
96 |
Picariello G, De Cicco M, Nocerino R, Paparo L, Mamone G, Addeo F, Berni Canani R. Excretion of Dietary Cow's Milk Derived Peptides Into Breast Milk. Front Nutr 2019;6:25. [PMID: 30931311 DOI: 10.3389/fnut.2019.00025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
|
97 |
Corrochano AR, Ferraretto A, Arranz E, Stuknytė M, Bottani M, O'Connor PM, Kelly PM, De Noni I, Buckin V, Giblin L. Bovine whey peptides transit the intestinal barrier to reduce oxidative stress in muscle cells. Food Chem 2019;288:306-14. [PMID: 30902298 DOI: 10.1016/j.foodchem.2019.03.009] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
|
98 |
Egger L, Ménard O, Portmann R. Quantitative Characterization of Digestion Processes. In: Gouseti O, Bornhorst GM, Bakalis S, Mackie A, editors. Interdisciplinary Approaches to Food Digestion. Cham: Springer International Publishing; 2019. pp. 159-84. [DOI: 10.1007/978-3-030-03901-1_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
99 |
Deng Y, Govers C, Bastiaan-Net S, van der Hulst N, Hettinga K, Wichers HJ. Hydrophobicity and aggregation, but not glycation, are key determinants for uptake of thermally processed β-lactoglobulin by THP-1 macrophages. Food Res Int 2019;120:102-13. [PMID: 31000219 DOI: 10.1016/j.foodres.2019.01.038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
|
100 |
Fenelon MA, Hickey RM, Buggy A, Mccarthy N, Murphy EG. Whey Proteins in Infant Formula. Whey Proteins 2019. [DOI: 10.1016/b978-0-12-812124-5.00013-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
101 |
Aadil RM, Roobab U, Sahar A, Rahman UU, Khalil AA. Functionality of Bioactive Nutrients in Beverages. Nutrients in Beverages 2019. [DOI: 10.1016/b978-0-12-816842-4.00007-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
102 |
Nongonierma AB, Fitzgerald RJ. Caseinophosphopeptides. Encyclopedia of Food Chemistry 2019. [DOI: 10.1016/b978-0-08-100596-5.21745-9] [Reference Citation Analysis]
|
103 |
Le Gouic AV, Harnedy PA, Fitzgerald RJ. Bioactive Peptides from Fish Protein By-Products. Bioactive Molecules in Food 2019. [DOI: 10.1007/978-3-319-78030-6_29] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
104 |
Giromini C, Cheli F, Rebucci R, Baldi A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J Dairy Sci 2019;102:929-42. [PMID: 30591343 DOI: 10.3168/jds.2018-15163] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
|
105 |
Fernández-Tomé S, Hernández-Ledesma B. Current state of art after twenty years of the discovery of bioactive peptide lunasin. Food Res Int 2019;116:71-8. [PMID: 30716999 DOI: 10.1016/j.foodres.2018.12.029] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
|
106 |
Karaś M. Influence of physiological and chemical factors on the absorption of bioactive peptides. Int J Food Sci Technol 2019;54:1486-96. [DOI: 10.1111/ijfs.14054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.6] [Reference Citation Analysis]
|
107 |
Pereira RN, Rodrigues RM, Ramos ÓL, Pinheiro AC, Martins JT, Teixeira JA, Vicente AA. Electric Field Processing: Novel Perspectives on Allergenicity of Milk Proteins. J Agric Food Chem 2018;66:11227-33. [DOI: 10.1021/acs.jafc.8b03689] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
|
108 |
Corrochano AR, Arranz E, De Noni I, Stuknytė M, Ferraretto A, Kelly PM, Buckin V, Giblin L. Intestinal health benefits of bovine whey proteins after simulated gastrointestinal digestion. Journal of Functional Foods 2018;49:526-35. [DOI: 10.1016/j.jff.2018.08.043] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
109 |
Pimentel G, Burton KJ, Vergères G, Dupont D. The role of foodomics to understand the digestion/bioactivity relationship of food. Current Opinion in Food Science 2018;22:67-73. [DOI: 10.1016/j.cofs.2018.02.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
|
110 |
Basilicata MG, Pepe G, Adesso S, Ostacolo C, Sala M, Sommella E, Scala MC, Messore A, Autore G, Marzocco S, Campiglia P. Antioxidant Properties of Buffalo-Milk Dairy Products: A β-Lg Peptide Released after Gastrointestinal Digestion of Buffalo Ricotta Cheese Reduces Oxidative Stress in Intestinal Epithelial Cells. Int J Mol Sci 2018;19:E1955. [PMID: 29973491 DOI: 10.3390/ijms19071955] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
|
111 |
Dullius A, Goettert MI, de Souza CFV. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. Journal of Functional Foods 2018;42:58-74. [DOI: 10.1016/j.jff.2017.12.063] [Cited by in Crossref: 97] [Cited by in F6Publishing: 98] [Article Influence: 19.4] [Reference Citation Analysis]
|
112 |
Gallego M, Mora L, Toldrá F. Health relevance of antihypertensive peptides in foods. Current Opinion in Food Science 2018;19:8-14. [DOI: 10.1016/j.cofs.2017.12.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
|
113 |
Le Gouic AV, Harnedy PA, Fitzgerald RJ. Bioactive Peptides From Fish Protein By-Products. Reference Series in Phytochemistry 2018. [DOI: 10.1007/978-3-319-54528-8_29-1] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
|
114 |
Nongonierma AB, Lamoureux C, Fitzgerald RJ. Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket ( Gryllodes sigillatus ) proteins. Food Funct 2018;9:407-16. [DOI: 10.1039/c7fo01568b] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
|
115 |
Santos-hernández M, Tomé D, Gaudichon C, Recio I. Stimulation of CCK and GLP-1 secretion and expression in STC-1 cells by human jejunal contents and in vitro gastrointestinal digests from casein and whey proteins. Food Funct 2018;9:4702-13. [DOI: 10.1039/c8fo01059e] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
|
116 |
Nongonierma AB, FitzGerald RJ. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal Bioanal Chem 2018;410:3407-23. [PMID: 29260283 DOI: 10.1007/s00216-017-0793-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
|
117 |
Egger L, Ménard O, Baumann C, Duerr D, Schlegel P, Stoll P, Vergères G, Dupont D, Portmann R. Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data. Food Res Int 2019;118:32-9. [PMID: 30898349 DOI: 10.1016/j.foodres.2017.12.049] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 10.2] [Reference Citation Analysis]
|
118 |
Dalziel JE, Young W, McKenzie CM, Haggarty NW, Roy NC. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model. Nutrients 2017;9:E1351. [PMID: 29236034 DOI: 10.3390/nu9121351] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
|
119 |
Egger L, Schlegel P, Baumann C, Stoffers H, Guggisberg D, Brügger C, Dürr D, Stoll P, Vergères G, Portmann R. Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion. Food Research International 2017;102:567-74. [DOI: 10.1016/j.foodres.2017.09.047] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 11.7] [Reference Citation Analysis]
|
120 |
Vilcacundo R, Miralles B, Carrillo W, Hernández-Ledesma B. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Res Int 2018;105:403-11. [PMID: 29433229 DOI: 10.1016/j.foodres.2017.11.036] [Cited by in Crossref: 80] [Cited by in F6Publishing: 64] [Article Influence: 13.3] [Reference Citation Analysis]
|
121 |
Villa C, Costa J, Oliveira MBP, Mafra I. Bovine Milk Allergens: A Comprehensive Review: Bovine milk allergens…. Comprehensive Reviews in Food Science and Food Safety 2018;17:137-64. [DOI: 10.1111/1541-4337.12318] [Cited by in Crossref: 95] [Cited by in F6Publishing: 102] [Article Influence: 15.8] [Reference Citation Analysis]
|
122 |
Nongonierma AB, Paolella S, Mudgil P, Maqsood S, FitzGerald RJ. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem 2018;244:340-8. [PMID: 29120791 DOI: 10.1016/j.foodchem.2017.10.033] [Cited by in Crossref: 91] [Cited by in F6Publishing: 95] [Article Influence: 15.2] [Reference Citation Analysis]
|
123 |
Miralles B, Del Barrio R, Cueva C, Recio I, Amigo L. Dynamic gastric digestion of a commercial whey protein concentrate†. J Sci Food Agric 2018;98:1873-9. [PMID: 28898422 DOI: 10.1002/jsfa.8668] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
|