BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Srihari S, Yong CH, Patil A, Wong L. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes. FEBS Lett 2015;589:2590-602. [PMID: 25913176 DOI: 10.1016/j.febslet.2015.04.026] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 6.9] [Reference Citation Analysis]
Number Citing Articles
1 Goh WWB, Wong L. Integrating Networks and Proteomics: Moving Forward. Trends in Biotechnology 2016;34:951-9. [DOI: 10.1016/j.tibtech.2016.05.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
2 Elahi A, Babamir SM. Identification of Protein Complexes Based on Core-Attachment Structure and Combination of Centrality Measures and Biological Properties in PPI Weighted Networks. Protein J 2020;39:681-702. [PMID: 33040223 DOI: 10.1007/s10930-020-09922-z] [Reference Citation Analysis]
3 Pellegrini M, Baglioni M, Geraci F. Protein complex prediction for large protein protein interaction networks with the Core&Peel method. BMC Bioinformatics 2016;17:372. [PMID: 28185552 DOI: 10.1186/s12859-016-1191-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
4 Omranian S, Angeleska A, Nikoloski Z. PC2P: Parameter-free network-based prediction of protein complexes. Bioinformatics 2021:btaa1089. [PMID: 33416831 DOI: 10.1093/bioinformatics/btaa1089] [Reference Citation Analysis]
5 Tabata S, Jevtic M, Kurashige N, Fuchida H, Kido M, Tani K, Zenmyo N, Uchinomiya S, Harada H, Itakura M, Hamachi I, Shigemoto R, Ojida A. Electron Microscopic Detection of Single Membrane Proteins by a Specific Chemical Labeling. iScience 2019;22:256-68. [PMID: 31786521 DOI: 10.1016/j.isci.2019.11.025] [Reference Citation Analysis]
6 Goh WWB, Wong L. NetProt: Complex-based Feature Selection. J Proteome Res 2017;16:3102-12. [PMID: 28664733 DOI: 10.1021/acs.jproteome.7b00363] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
7 Ivazeh A, Zahiri J, Rahgozar M, Srihari S. Performance evaluation measures for protein complex prediction. Genomics 2019;111:1483-92. [PMID: 30312661 DOI: 10.1016/j.ygeno.2018.10.003] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Pyrogova I, Wong L. Protein complex prediction by date hub removal. Comput Biol Chem 2018;74:407-19. [PMID: 29602640 DOI: 10.1016/j.compbiolchem.2018.03.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Wang SM, Sun ZQ, Li HY, Wang J, Liu QY. Temporal Identification of Dysregulated Genes and Pathways in Clear Cell Renal Cell Carcinoma Based on Systematic Tracking of Disrupted Modules. Comput Math Methods Med 2015;2015:313740. [PMID: 26543493 DOI: 10.1155/2015/313740] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
10 Liu Q, Song J, Li J. Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes. Sci Rep 2016;6:21223. [PMID: 26868667 DOI: 10.1038/srep21223] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
11 Vella D, Marini S, Vitali F, Di Silvestre D, Mauri G, Bellazzi R. MTGO: PPI Network Analysis Via Topological and Functional Module Identification. Sci Rep 2018;8:5499. [PMID: 29615773 DOI: 10.1038/s41598-018-23672-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
12 Steffen P, Kwiatkowski M, Robertson WD, Zarrine-afsar A, Deterra D, Richter V, Schlüter H. Protein species as diagnostic markers. Journal of Proteomics 2016;134:5-18. [DOI: 10.1016/j.jprot.2015.12.015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
13 Wen Bin Goh W, Thalappilly S, Thibault G. Moving beyond the current limits of data analysis in longevity and healthy lifespan studies. Drug Discov Today 2019;24:2273-85. [PMID: 31499187 DOI: 10.1016/j.drudis.2019.08.008] [Reference Citation Analysis]
14 Mokaberi P, Babayan-mashhadi F, Amiri Tehrani Zadeh Z, Saberi MR, Chamani J. Analysis of the interaction behavior between Nano-Curcumin and two human serum proteins: combining spectroscopy and molecular stimulation to understand protein-protein interaction. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2020.1766570] [Cited by in Crossref: 41] [Cited by in F6Publishing: 29] [Article Influence: 20.5] [Reference Citation Analysis]
15 Maulik U, Basu S, Ray S. Identifying protein complexes in PPI network using non-cooperative sequential game. Sci Rep 2017;7:8410. [PMID: 28827597 DOI: 10.1038/s41598-017-08760-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
16 Glatigny A, Gambette P, Bourand-Plantefol A, Dujardin G, Mucchielli-Giorgi MH. Development of an in silico method for the identification of subcomplexes involved in the biogenesis of multiprotein complexes in Saccharomyces cerevisiae. BMC Syst Biol 2017;11:67. [PMID: 28693620 DOI: 10.1186/s12918-017-0442-0] [Reference Citation Analysis]
17 Rizzetto S, Moyseos P, Baldacci B, Priami C, Csikász-Nagy A. Context-dependent prediction of protein complexes by SiComPre. NPJ Syst Biol Appl 2018;4:37. [PMID: 30245847 DOI: 10.1038/s41540-018-0073-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Byron A. Clustering and Network Analysis of Reverse Phase Protein Array Data. Methods Mol Biol 2017;1606:171-91. [PMID: 28502001 DOI: 10.1007/978-1-4939-6990-6_12] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
19 Byron A. Proteomic Profiling of Integrin Adhesion Complex Assembly. In: Marsh JA, editor. Protein Complex Assembly. New York: Springer; 2018. pp. 193-236. [DOI: 10.1007/978-1-4939-7759-8_13] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Goh WWB, Wong L. Design principles for clinical network-based proteomics. Drug Discovery Today 2016;21:1130-8. [DOI: 10.1016/j.drudis.2016.05.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
21 Stöcker BK, Köster J, Zamir E, Rahmann S. Modeling and simulating networks of interdependent protein interactions. Integr Biol (Camb) 2018;10:290-305. [PMID: 29676773 DOI: 10.1039/c8ib00012c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
22 Abdulateef AH, Attea BA, Rashid AN, Al-ani M. A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks. Applied Soft Computing 2018;73:1004-25. [DOI: 10.1016/j.asoc.2018.09.031] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
23 Rudashevskaya EL, Sickmann A, Markoutsa S. Global profiling of protein complexes: current approaches and their perspective in biomedical research. Expert Rev Proteomics 2016;13:951-64. [PMID: 27602509 DOI: 10.1080/14789450.2016.1233064] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
24 Su L, Liu G, Bai T, Meng X, Ma Q. MGOGP: a gene module-based heuristic algorithm for cancer-related gene prioritization. BMC Bioinformatics 2018;19:215. [PMID: 29871590 DOI: 10.1186/s12859-018-2216-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
25 Mei S. A framework combines supervised learning and dense subgraphs discovery to predict protein complexes. Front Comput Sci 2022;16. [DOI: 10.1007/s11704-021-0476-8] [Reference Citation Analysis]
26 Goh WWB, Wong L. Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms. J Proteome Res 2016;15:3167-79. [DOI: 10.1021/acs.jproteome.6b00402] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
27 Inostroza D, Hernández C, Seco D, Navarro G, Olivera-Nappa A. Cell cycle and protein complex dynamics in discovering signaling pathways. J Bioinform Comput Biol 2019;17:1950011. [PMID: 31230498 DOI: 10.1142/S0219720019500112] [Reference Citation Analysis]
28 Miura K. An Overview of Current Methods to Confirm Protein-Protein Interactions. Protein Pept Lett 2018;25:728-33. [PMID: 30129399 DOI: 10.2174/0929866525666180821122240] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
29 Rizzetto S, Csikász-Nagy A. Toward Large-Scale Computational Prediction of Protein Complexes. Methods Mol Biol 2018;1819:271-95. [PMID: 30421409 DOI: 10.1007/978-1-4939-8618-7_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Zhao Y, Sue AC, Goh WWB. Deeper investigation into the utility of functional class scoring in missing protein prediction from proteomics data. J Bioinform Comput Biol 2019;17:1950013. [DOI: 10.1142/s0219720019500136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Shen X, Zhou J, Yi L, Hu X, He T, Yang J. Identifying protein complexes based on brainstorming strategy. Methods 2016;110:44-53. [PMID: 27405005 DOI: 10.1016/j.ymeth.2016.07.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Fareh M, Loeff L, Szczepaniak M, Haagsma AC, Yeom KH, Joo C. Single-molecule pull-down for investigating protein-nucleic acid interactions. Methods 2016;105:99-108. [PMID: 27017911 DOI: 10.1016/j.ymeth.2016.03.022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
33 Goh WWB, Zhao Y, Sue AC, Guo T, Wong L. Proteomic investigation of intra-tumor heterogeneity using network-based contextualization - A case study on prostate cancer. J Proteomics 2019;206:103446. [PMID: 31323421 DOI: 10.1016/j.jprot.2019.103446] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Fareh M, Joo C. Probing RNA-Protein Interactions with Single-Molecule Pull-Down Assays. Methods Mol Biol 2018;1814:267-85. [PMID: 29956238 DOI: 10.1007/978-1-4939-8591-3_16] [Reference Citation Analysis]
35 Mei S, Zhang K. A Computational Framework for Predicting Direct Contacts and Substructures within Protein Complexes. Biomolecules 2019;9:E656. [PMID: 31717703 DOI: 10.3390/biom9110656] [Reference Citation Analysis]
36 Shen X, Yi L, Jiang X, He T, Yang J, Xie W, Hu P, Hu X. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network. PLoS One 2017;12:e0186134. [PMID: 29045465 DOI: 10.1371/journal.pone.0186134] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li B, Liao B. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations. Int J Mol Sci 2017;18:E1910. [PMID: 28878201 DOI: 10.3390/ijms18091910] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
38 Shen X, Yi L, Jiang X, He T, Hu X, Yang J. Mining Temporal Protein Complex Based on the Dynamic PIN Weighted with Connected Affinity and Gene Co-Expression. PLoS One 2016;11:e0153967. [PMID: 27100396 DOI: 10.1371/journal.pone.0153967] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
39 Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J. Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods 2016;110:90-6. [PMID: 27320204 DOI: 10.1016/j.ymeth.2016.06.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]